nsfw_detect: Use PyAV instead of ffmpegthumbnailer
This commit is contained in:
parent
14cfe3da58
commit
eb0b1d2f69
|
@ -56,7 +56,7 @@ neural network model. This works for images and video files and requires
|
|||
the following:
|
||||
|
||||
* Caffe Python module (built for Python 3)
|
||||
* ``ffmpegthumbnailer`` executable in ``$PATH``
|
||||
* `PyAV <https://github.com/PyAV-Org/PyAV>`_
|
||||
|
||||
|
||||
Network Security Considerations
|
||||
|
|
|
@ -22,11 +22,12 @@ import numpy as np
|
|||
import os
|
||||
import sys
|
||||
from io import BytesIO
|
||||
from subprocess import run, PIPE, DEVNULL
|
||||
from pathlib import Path
|
||||
|
||||
os.environ["GLOG_minloglevel"] = "2" # seriously :|
|
||||
import caffe
|
||||
import av
|
||||
av.logging.set_level(av.logging.PANIC)
|
||||
|
||||
class NSFWDetector:
|
||||
def __init__(self):
|
||||
|
@ -49,7 +50,7 @@ class NSFWDetector:
|
|||
self.caffe_transformer.set_channel_swap('data', (2, 1, 0))
|
||||
|
||||
def _compute(self, img):
|
||||
image = caffe.io.load_image(BytesIO(img))
|
||||
image = caffe.io.load_image(img)
|
||||
|
||||
H, W, _ = image.shape
|
||||
_, _, h, w = self.nsfw_net.blobs["data"].data.shape
|
||||
|
@ -71,13 +72,23 @@ class NSFWDetector:
|
|||
|
||||
def detect(self, fpath):
|
||||
try:
|
||||
ff = run([
|
||||
"ffmpegthumbnailer", "-m", "-o-", "-s256", "-t50%", "-a",
|
||||
"-cpng", "-i", fpath
|
||||
], stdout=PIPE, stderr=DEVNULL, check=True)
|
||||
image_data = ff.stdout
|
||||
with av.open(fpath) as container:
|
||||
try: container.seek(int(container.duration / 2))
|
||||
except: container.seek(0)
|
||||
|
||||
scores = self._compute(image_data)
|
||||
frame = next(container.decode(video=0))
|
||||
|
||||
if frame.width >= frame.height:
|
||||
w = 256
|
||||
h = int(frame.height * (256 / frame.width))
|
||||
else:
|
||||
w = int(frame.width * (256 / frame.height))
|
||||
h = 256
|
||||
frame = frame.reformat(width=w, height=h, format="rgb24")
|
||||
img = BytesIO()
|
||||
frame.to_image().save(img, format="ppm")
|
||||
|
||||
scores = self._compute(img)
|
||||
except:
|
||||
return -1.0
|
||||
|
||||
|
|
Loading…
Reference in a new issue