forked from mia/Aegisub
79 lines
1.3 KiB
C++
79 lines
1.3 KiB
C++
|
#include <math.h>
|
|||
|
#include "FexGenericFilter_Include.h"
|
|||
|
|
|||
|
FexFilter::FexFilter()
|
|||
|
{
|
|||
|
Width = 3;
|
|||
|
}
|
|||
|
FexFilter::~FexFilter()
|
|||
|
{
|
|||
|
}
|
|||
|
double FexFilter::Filter( double t )
|
|||
|
{
|
|||
|
return t/Width;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
f(x) = e^(-x^2 / (2 s^2) )
|
|||
|
f(x) = e^(-x^2 / t)
|
|||
|
|
|||
|
width:
|
|||
|
SOLVE(0.1 = f(x), x, Real)
|
|||
|
x = - sqrt(t LN(10) ? x = sqrt(t LN(10)
|
|||
|
|
|||
|
sum:
|
|||
|
|
|||
|
Integral from -sqrt(t LN(10) to sqrt(t LN(10) of f(x) dx
|
|||
|
1.715955662<EFBFBD>sqrt(t)
|
|||
|
*/
|
|||
|
|
|||
|
FexFilter_Gauss::FexFilter_Gauss( double sigma )
|
|||
|
{
|
|||
|
Sigma = sigma;
|
|||
|
TwoSigmaSq = 2*sigma*sigma;
|
|||
|
Width = sqrt( TwoSigmaSq*log(10) );
|
|||
|
Normalize = 1.0 / (1.715955662 * sqrt( TwoSigmaSq ));
|
|||
|
}
|
|||
|
FexFilter_Gauss::~FexFilter_Gauss()
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
double FexFilter_Gauss::Filter( double t )
|
|||
|
{
|
|||
|
return exp( -t*t / TwoSigmaSq ) * Normalize;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
f(x) = -x * e^(-x^2 / (2 s^2) )
|
|||
|
f(x) = -x * e^(-x^2 / t)
|
|||
|
|
|||
|
width:
|
|||
|
use the width of gauss since i'm clueless here
|
|||
|
|
|||
|
sum:
|
|||
|
|
|||
|
Integral from -sqrt(t LN(10) to sqrt(t LN(10) of -x*f(x) dx
|
|||
|
0.7062351183<EFBFBD>t^1.5
|
|||
|
*/
|
|||
|
|
|||
|
FexFilter_GaussDerivation::FexFilter_GaussDerivation( double sigma )
|
|||
|
{
|
|||
|
Sigma = sigma;
|
|||
|
TwoSigmaSq = 2*sigma*sigma;
|
|||
|
Width = sqrt( TwoSigmaSq*log(10) );
|
|||
|
Normalize = 1.0 / (0.7062351183 * pow( TwoSigmaSq, 1.5 ));
|
|||
|
}
|
|||
|
|
|||
|
FexFilter_GaussDerivation::~FexFilter_GaussDerivation()
|
|||
|
{
|
|||
|
}
|
|||
|
|
|||
|
double FexFilter_GaussDerivation::Filter( double t )
|
|||
|
{
|
|||
|
return -t * exp( -t*t / TwoSigmaSq ) * Normalize;
|
|||
|
}
|