Merge branch 'spectrum-frequency-mapping' into feature

This commit is contained in:
arch1t3cht 2022-07-27 15:26:36 +02:00
commit 0926f84d0e
8 changed files with 188 additions and 41 deletions

View file

@ -129,7 +129,7 @@ END_EVENT_TABLE()
void AudioBox::OnMouseWheel(wxMouseEvent &evt) {
if (!ForwardMouseWheelEvent(audioDisplay, evt))
return;
bool zoom = evt.CmdDown() != OPT_GET("Audio/Wheel Default to Zoom")->GetBool();
bool zoom = evt.CmdDown() != OPT_GET("Audio/Wheel Default to Zoom")->GetBool() || evt.ShiftDown();
if (!zoom) {
int amount = -evt.GetWheelRotation();
// If the user did a horizontal scroll the amount should be inverted
@ -145,7 +145,11 @@ void AudioBox::OnMouseWheel(wxMouseEvent &evt) {
mouse_zoom_accum += evt.GetWheelRotation();
int zoom_delta = mouse_zoom_accum / evt.GetWheelDelta();
mouse_zoom_accum %= evt.GetWheelDelta();
SetHorizontalZoom(audioDisplay->GetZoomLevel() + zoom_delta);
if (evt.ShiftDown()) {
SetVerticalZoom(OPT_GET("Audio/Zoom/Vertical")->GetInt() + 3 * zoom_delta);
} else {
SetHorizontalZoom(audioDisplay->GetZoomLevel() + zoom_delta);
}
}
}
@ -179,10 +183,15 @@ void AudioBox::SetHorizontalZoom(int new_zoom) {
}
void AudioBox::OnVerticalZoom(wxScrollEvent &event) {
int pos = mid(1, event.GetPosition(), 100);
SetVerticalZoom(event.GetPosition());
}
void AudioBox::SetVerticalZoom(int new_zoom) {
int pos = mid(1, new_zoom, 100);
OPT_SET("Audio/Zoom/Vertical")->SetInt(pos);
double value = pow(pos / 50.0, 3);
audioDisplay->SetAmplitudeScale(value);
VerticalZoom->SetValue(pos);
if (!VolumeBar->IsEnabled()) {
VolumeBar->SetValue(pos);
controller->SetVolume(value);

View file

@ -73,6 +73,7 @@ class AudioBox final : public wxSashWindow {
int mouse_zoom_accum = 0;
void SetHorizontalZoom(int new_zoom);
void SetVerticalZoom(int new_zoom);
void OnAudioOpen();
void OnHorizontalZoom(wxScrollEvent &event);
void OnMouseWheel(wxMouseEvent &evt);

View file

@ -760,6 +760,15 @@ void AudioDisplay::ReloadRenderingSettings()
spectrum_width[spectrum_quality],
spectrum_distance[spectrum_quality]);
// Frequency curve
int64_t spectrum_freq_curve = OPT_GET("Audio/Renderer/Spectrum/FreqCurve")->GetInt();
spectrum_freq_curve = mid<int64_t>(0, spectrum_freq_curve, 4);
const float spectrum_fref_pos [] = { 0.001f, 0.125f, 0.333f, 0.425f, 0.999f };
audio_spectrum_renderer->set_reference_frequency_position (
spectrum_fref_pos [spectrum_freq_curve]
);
audio_renderer_provider = std::move(audio_spectrum_renderer);
}
else
@ -1229,6 +1238,7 @@ void AudioDisplay::OnAudioOpen(agi::AudioProvider *provider)
OPT_SUB("Colour/Audio Display/Spectrum", &AudioDisplay::ReloadRenderingSettings, this),
OPT_SUB("Colour/Audio Display/Waveform", &AudioDisplay::ReloadRenderingSettings, this),
OPT_SUB("Audio/Renderer/Spectrum/Quality", &AudioDisplay::ReloadRenderingSettings, this),
OPT_SUB("Audio/Renderer/Spectrum/FreqCurve", &AudioDisplay::ReloadRenderingSettings, this),
});
OnTimingController();
}

View file

@ -100,6 +100,8 @@ AudioSpectrumRenderer::~AudioSpectrumRenderer()
void AudioSpectrumRenderer::RecreateCache()
{
update_derivation_values ();
#ifdef WITH_FFTW3
if (dft_plan)
{
@ -143,20 +145,29 @@ void AudioSpectrumRenderer::OnSetProvider()
void AudioSpectrumRenderer::SetResolution(size_t _derivation_size, size_t _derivation_dist)
{
if (derivation_dist != _derivation_dist)
if (derivation_dist_user != _derivation_dist)
{
derivation_dist = _derivation_dist;
if (cache)
cache->Age(0);
derivation_dist_user = _derivation_dist;
update_derivation_values ();
AgeCache (0);
}
if (derivation_size != _derivation_size)
if (derivation_size_user != _derivation_size)
{
derivation_size = _derivation_size;
derivation_size_user = _derivation_size;
RecreateCache();
}
}
void AudioSpectrumRenderer::set_reference_frequency_position (float pos_fref_)
{
assert (pos_fref_ > 0.f);
assert (pos_fref_ < 1.f);
pos_fref = pos_fref_;
}
template<class T>
void AudioSpectrumRenderer::ConvertToFloat(size_t count, T *dest) {
for (size_t si = 0; si < count; ++si)
@ -165,6 +176,32 @@ void AudioSpectrumRenderer::ConvertToFloat(size_t count, T *dest) {
}
}
void AudioSpectrumRenderer::update_derivation_values ()
{
// Below this sampling rate (Hz), the derivation values are identical to
// the user-provided ones. Otherwise, they are scaled according to the
// ratio between the sampling rates.
// The threshold is set at 50 kHz so with standard rates like 48 kHz,
// the values are kept identical, and scaled with higher standard rates
// like 88.2 or 96 kHz.
constexpr float sample_rate_ref = 50000.f;
derivation_dist = derivation_dist_user;
derivation_size = derivation_size_user;
if (provider != nullptr)
{
const int sample_rate = provider->GetSampleRate ();
float mult = float (sample_rate) / sample_rate_ref;
while (mult > 1)
{
++ derivation_dist;
++ derivation_size;
mult *= 0.5f;
}
}
}
void AudioSpectrumRenderer::FillBlock(size_t block_index, float *block)
{
assert(cache);
@ -173,12 +210,19 @@ void AudioSpectrumRenderer::FillBlock(size_t block_index, float *block)
int64_t first_sample = (((int64_t)block_index) << derivation_dist) - ((int64_t)1 << derivation_size);
provider->GetAudio(&audio_scratch[0], first_sample, 2 << derivation_size);
// Because the FFTs used here are unnormalized DFTs, we have to compensate
// the possible length difference between derivation_size used in the
// calculations and its user-provided counterpart. Thus, the display is
// kept independent of the sampling rate.
const float scale_fix =
1.f / sqrtf (float (1 << (derivation_size - derivation_size_user)));
#ifdef WITH_FFTW3
ConvertToFloat(2 << derivation_size, dft_input);
fftw_execute(dft_plan);
double scale_factor = 9 / sqrt(2 << (derivation_size + 1));
double scale_factor = scale_fix * 9 / sqrt(2 << (derivation_size + 1));
fftw_complex *o = dft_output;
for (size_t si = (size_t)1<<derivation_size; si > 0; --si)
@ -196,7 +240,7 @@ void AudioSpectrumRenderer::FillBlock(size_t block_index, float *block)
FFT fft;
fft.Transform(2<<derivation_size, fft_input, fft_real, fft_imag);
float scale_factor = 9 / sqrt(2 * (float)(2<<derivation_size));
float scale_factor = scale_fix * 9 / sqrt(2 * (float)(2<<derivation_size));
for (size_t si = 1<<derivation_size; si > 0; --si)
{
@ -211,6 +255,10 @@ void AudioSpectrumRenderer::FillBlock(size_t block_index, float *block)
void AudioSpectrumRenderer::Render(wxBitmap &bmp, int start, AudioRenderingStyle style)
{
// Misc. utility functions
auto floor_int = [] (float val) { return int (floorf (val )); };
auto round_int = [] (float val) { return int (floorf (val + 0.5f)); };
if (!cache)
return;
@ -231,9 +279,34 @@ void AudioSpectrumRenderer::Render(wxBitmap &bmp, int start, AudioRenderingStyle
const AudioColorScheme *pal = &colors[style];
/// @todo Make minband and maxband configurable
int minband = 0;
int maxband = 1 << derivation_size;
// Sampling rate, in Hz.
const float sample_rate = float (provider->GetSampleRate ());
// Number of FFT bins, excluding the "Nyquist" one
const int nbr_bins = 1 << derivation_size;
// minband and maxband define an half-open range.
int minband = 1; // Starts at 1, we don't care about showing the DC.
int maxband = std::min (
round_int (nbr_bins * max_freq / (sample_rate * 0.5f)),
nbr_bins
);
assert (minband < maxband);
// Precomputes this once, this will be useful for the log curve.
const float scale_log = logf (maxband / minband);
// Turns the user-specified 1 kHz position into a ratio between the linear
// and logarithmic curves that we can directly use in the following
// calculations.
assert (pos_fref > 0);
assert (pos_fref < 1);
float b_fref = nbr_bins * freq_ref / (sample_rate * 0.5f);
b_fref = mid (1.f, b_fref, float (maxband - 1));
const float clin = minband + (maxband - minband) * pos_fref;
const float clog = minband * expf (pos_fref * scale_log);
float log_ratio_calc = (b_fref - clin) / (clog - clin);
log_ratio_calc = mid (0.f, log_ratio_calc, 1.f);
// ax = absolute x, absolute to the virtual spectrum bitmap
for (int ax = start; ax < end; ++ax)
@ -245,36 +318,51 @@ void AudioSpectrumRenderer::Render(wxBitmap &bmp, int start, AudioRenderingStyle
// Prepare bitmap writing
unsigned char *px = imgdata + (imgheight-1) * stride + (ax - start) * 3;
// Scale up or down vertically?
if (imgheight > 1<<derivation_size)
float bin_prv = minband;
float bin_cur = minband;
for (int y = 0; y < imgheight; ++y)
{
// Interpolate
for (int y = 0; y < imgheight; ++y)
assert (bin_cur < float (maxband));
float bin_nxt = maxband;
if (y + 1 < imgheight)
{
assert(px >= imgdata);
assert(px < imgdata + imgheight*stride);
auto ideal = (double)(y+1.)/imgheight * (maxband-minband) + minband;
float sample1 = power[(int)floor(ideal)+minband];
float sample2 = power[(int)ceil(ideal)+minband];
float frac = ideal - floor(ideal);
float val = (1-frac)*sample1 + frac*sample2;
pal->map(val*amplitude_scale, px);
px -= stride;
// Bin index is an interpolation between the linear and log curves.
const float pos_rel = float (y + 1) / float (imgheight);
const float b_lin = minband + pos_rel * (maxband - minband);
const float b_log = minband * expf (pos_rel * scale_log);
bin_nxt = b_lin + log_ratio_calc * (b_log - b_lin);
}
}
else
{
// Pick greatest
for (int y = 0; y < imgheight; ++y)
float val = 0;
// Interpolate between consecutive bins
if (bin_nxt - bin_prv < 2)
{
assert(px >= imgdata);
assert(px < imgdata + imgheight*stride);
int sample1 = std::max(0, maxband * y/imgheight + minband);
int sample2 = std::min((1<<derivation_size)-1, maxband * (y+1)/imgheight + minband);
float maxval = *std::max_element(&power[sample1], &power[sample2 + 1]);
pal->map(maxval*amplitude_scale, px);
px -= stride;
const int bin_0 = floor_int (bin_cur);
const int bin_1 = std::min (bin_0 + 1, nbr_bins - 1);
const float frac = bin_cur - float (bin_0);
const float v0 = power [bin_0];
const float v1 = power [bin_1];
val = v0 + frac * (v1 - v0);
}
// Pick the greatest bin on the interval
else
{
int bin_inf = floor_int ((bin_prv + bin_cur) * 0.5f);
int bin_sup = floor_int ((bin_cur + bin_nxt) * 0.5f);
bin_inf = std::min (bin_inf, nbr_bins - 2);
bin_sup = std::min (bin_sup, nbr_bins - 1);
assert (bin_inf < bin_sup);
val = *std::max_element (&power [bin_inf], &power [bin_sup]);
}
pal->map (val * amplitude_scale, px);
px -= stride;
bin_prv = bin_cur;
bin_cur = bin_nxt;
}
}

View file

@ -61,10 +61,34 @@ class AudioSpectrumRenderer final : public AudioRendererBitmapProvider {
/// Colour tables used for rendering
std::vector<AudioColorScheme> colors;
/// User-provided value for derivation_size
size_t derivation_size_user = 0;
/// User-provided value for derivation_dist
size_t derivation_dist_user = 0;
/// Maximum audible, displayed frequency. Avoids wasting the display space
/// with ultrasonic content at sampling rates > 40 kHz.
float max_freq = 20000.f;
/// Relative vertical position of the 1 kHz frequency, in (0 ; 1) open range
/// 0 = bottom of the display zone, 1 = top
/// The actual position, as displayed, is limited by the available mapping
/// curves (linear and log).
/// Values close to 0 will give a linear curve, and close to 1 a log curve.
float pos_fref = 1.0f / 3;
/// Reference frequency which vertical position is constant, Hz.
const float freq_ref = 1000.0f;
/// Binary logarithm of number of samples to use in deriving frequency-power data
/// This could differ from the user-provided value because the actual value
/// used in computations may be scaled, depending on the sampling rate.
size_t derivation_size = 0;
/// Binary logarithm of number of samples between the start of derivations
/// This could differ from the user-provided value because the actual value
/// used in computations may be scaled, depending on the sampling rate.
size_t derivation_dist = 0;
/// @brief Reset in response to changing audio provider
@ -90,6 +114,9 @@ class AudioSpectrumRenderer final : public AudioRendererBitmapProvider {
template<class T>
void ConvertToFloat(size_t count, T *dest);
/// @brief Updates the derivation_* after a derivation_*_user change.
void update_derivation_values ();
#ifdef WITH_FFTW3
/// FFTW plan data
fftw_plan dft_plan = nullptr;
@ -133,6 +160,12 @@ public:
/// is specified too large, it will be clamped to the size.
void SetResolution(size_t derivation_size, size_t derivation_dist);
/// @brief Set the vertical relative position of the reference frequency (1 kHz)
/// @param fref_pos_ Vertical position of the 1 kHz frequency. Between 0 and 1, boundaries excluded.
///
/// A value close to 0 gives a linear display, and close to 1 a logarithmic display.
void set_reference_frequency_position (float pos_fref_);
/// @brief Cleans up the cache
/// @param max_size Maximum size in bytes for the cache
void AgeCache(size_t max_size) override;

View file

@ -71,7 +71,8 @@
"Spectrum" : {
"Cutoff" : 0,
"Memory Max" : 128,
"Quality" : 1
"Quality" : 1,
"FreqCurve" : 0
}
},
"Snap" : {

View file

@ -71,7 +71,8 @@
"Spectrum" : {
"Cutoff" : 0,
"Memory Max" : 128,
"Quality" : 1
"Quality" : 1,
"FreqCurve" : 0
}
},
"Snap" : {

View file

@ -386,6 +386,10 @@ void Advanced_Audio(wxTreebook *book, Preferences *parent) {
wxArrayString sq_choice(4, sq_arr);
p->OptionChoice(spectrum, _("Quality"), sq_choice, "Audio/Renderer/Spectrum/Quality");
const wxString sc_arr[5] = { _("Linear"), _("Extended"), _("Medium"), _("Compressed"), _("Logarithmic") };
wxArrayString sc_choice(5, sc_arr);
p->OptionChoice(spectrum, _("Frequency mapping"), sc_choice, "Audio/Renderer/Spectrum/FreqCurve");
p->OptionAdd(spectrum, _("Cache memory max (MB)"), "Audio/Renderer/Spectrum/Memory Max", 2, 1024);
#ifdef WITH_AVISYNTH