AS5 SUBTITLE FORMAT

By Rodrigo Braz Monteiro, Niels Martin Hansen and David Lamparter

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

July 10, 2007

Contents

22T TASST . . o
222 JEvents]l.

[2.2.3 [Styles]|
224 TResources]] v v o s,

[3__Style Overrides
[3.1 General Information on Override Tags|o
.....................................
3.3 Advanced Sub Station Alpha Tags|

.......................................

B4.6 \EIECH « - « v v v e e e e e e e e e
3.4.7 § relative] L e
3.4.8 \verticall. e e
5 ASS DIStOTTION TAGS|. « « v v o e e e e e e e e e e e e e e

|3.§ AS5 Rasterlhg Ta§s|

3.6.1 \AVC . . o e e e
3.6.2 \#blend|. e e

3.6.3 \iclip|
3.6.4 \blur|. e e
3.7 AS5Advanced Tags|.

|4 Renderer Behaviour Specification|

[5_Container Multiplexing Specification|

L{...

12

13
13

14

1 Abstract

This document specifies the AS5 Subtitle Format, developed jointly by the Aegisub[1] and asa[2] teams
in order to replace the old Sub Station Alpha[3] subtitle format and its extensions:

e Advanced Sub Station Alpha (ASS) implemented by Gabest in VSFilter[5]
e Advanced Sub Station Alpha 2 (ASS2), also implemented by Gabest in VSFilter

e Advanced Sub Station Alpha 3 (ASS3) implemented by equinox in asa.

The goal is to create a flexible, easy to understand and powerful subtitle format that can be used in
hardsubs or multiplexed into Matroska Video[7]] files as softsubs.

ASS5 has no official meaning. The “A” can stand for Aegisub, asa, ASS or Advanced, the “S” for Subtitles,
and the 5 is a reference to the fact that it’s a major improvement over SSA4 format (from which ASS,
ASS2 and ASS3 derive). The full name of the format is “AS5 Subtitle Format”.

2 AS5 Files

2.1 File Format

All AS5 files are REQUIRED to comply with the three requirements below:

e Be encoded with one of UTF-8[8], UTF-16 Big Endian [9]] or UTF-16 Little Endian Unicode Trans-
formation Formats. UTF-8 is preffered.

e Not to have any character below Unicode code point U+20, except for U+09, U+0A, U+0D.
That is, it must be a plain-text file.

e All lines must end with Windows line endings, that is, U+ 0D followed by U+0A.

These requirements are important so the AS5 format can be edited in most plain-text editors across
most operating systems and languages without problems. The character set of a subtitle file can be
autodetermined by its Byte-Order Mark or by the value of the first two bytes. See below.

When used as a standalone file, the extension should be .As5. When multiplexed into a Matroska
container, the Codec ID should be S_TEXT/AS5.

TODO: Get clearance from the Matroska team to use that Codec ID.

2.2 File Structure

The file is divided in sections, which are uniquely identified by a string inside square brackets, in a line
of its own. From that point on, every next line is considered to be part of the last found section until
another section is found. There is no end-of-section termination mark; they always end at the start of
the next one or at the end of the file. Section names are case sensitive.

Each section is divided in lines, each line representing one command or definition. Empty lines (that is,
lines only containing a line ending) MUST be ignored by the parser. It is recommended that programs
generating ASS5 files insert a blank line at the end of each section to increase readability. There MUST
always be a blank line at the end of the file (as every line is required to end in a line break).

Each line in a section takes the general form of Type: datal,data2,...,dataN. An unknown Type MUST
be ignored by a parser. Subtitle editing programs SHOULD keep such ignored lines in the file after
re-saving it. Note that the space after the colon is mandatory.

There are two sections which are required, [AS5] and [Events], the former being the equivalent of
[Script Info] in previous formats. If either of those sections is missing, the file is invalid and (MUST) be
refused by the parser. Any other section can be ommitted from the file, and need not be implemented
by all parsers. However, any unknown section MUST be preserved in the file by a subtitle editing
program when it re-saves a file with sections that it does not recognize. It can, however, be removed
at the user’s discretion.

Finally, there is a special type of undefined group, [Private:PROGNAME], which MUST be ENTIRELY
preserved by other programs when re-saving it. This is used to store program-specific data. For
example, Aegisub would create a group called [Private:Aegisub] to store its data inside. This type of
group should be identified by the fact that it starts with “[Private:”.

Note that Format: lines from the previous formats are not admitted in AS5. If the parser finds any of
them, it MUST halt parsing.

The sections MAY be written in any order, with the exception of the [AS5] section which MUST always
be the first section.

2.2.1 [AS5]

This MUST be the first section in every ASS5 file. If the very first line of the file is not [AS5], the file
MUST be rejected by the parser as invalid. Note, however, that the first line is allowed to contain a
Byte-Order Mark (BOM), which is the character U+FEFF encoded in the encoding used for the rest of
the script[[10]]. The first four bytes will therefore be:

e OxEF 0xBB 0xBF 0x5B - UTF-8 (with BOM)
0x5B 0x41 0x53 0x53 - UTE-8 (without BOM)

OxFF OxFE 0x5B 0x00 - UTF-16 LE (with BOM)

0x5B 0x00 0x41 0x00 - UTE-16 LE (without BOM)

OxFE OxFF 0x00 0x5B - UTF-16 BE (with BOM)

0x00 0x5B 0x00 0x41 - UTE-16 BE (without BOM)

It is possible, therefore, to determine the encoding of the file by checking its first two bytes.

This section is used to declare several script properties that affect its parsing and rendering. All proper-
ties are stored in the format Name: data, with one property per line. This section MUST always declare
the following properties:

e ScriptType: Should always be set to AS5, for this particular version of the specification. If this
contains a value that the parser does not understand, it MUST abort parsing.

e Resolution: Should contain the script resolution in WxH format. For example, for a 640x480
script, this should say “Resolution: 640x480”. Note that this does not need to correspond to
the video resolution, however, subtitles MUST be rendered on such a coordinate space. That is,
in a 640x480 script, \pos(320,240) always represents the center of the script, no matter the
resolution of the video it’s being drawn on. Also, in a 100x100 script, a radius 50 circle centered
on the center will always take half of the height and half of the width of the video, even if that
means being distorted if drawn on a video with a non-1:1 aspect ratio (for example, a 640x480
video).

The following items MAY also be used; they are not required, but are recommended. They all have
default values:

e Generator: The name of the program that generated this script, e.g. “Generator: Aegisub”. De-
fault value is empty. This should be ignored by the renderer, but might be useful for inter-editing-
program interaction.

e Wrapping: The line wrapping style. This can be “Manual”, in which case only \n can break lines
or “Automatic”, in which the renderer chooses how to break them. The default is “Automatic”.
Note that if this is set to manual, the line can NEVER be broken at anywhere other than forced
line breaks, even if it means that the line will become unreadable because it goes outside the
display area.

e Extensions: A comma-separated list of all extensions being used in this file. At the moment, there
are no extensions available. Renderers should read this to enable any extensions that they might
support. Editing programs MUST keep this field intact, unless the user chooses otherwise. Scripts
WILL break if the list of extensions is suddenly lost.

e Credits: Credits for the people who worked on this subtitle file. Purely for informational purposes
and SHOULD be ignored by the renderer. Subtitling programs SHOULD be able to display these
credits to the user.

e Title: The title of this script. Purely for informational purposes and SHOULD be ignored by the
renderer. Subtitling programs SHOULD be able to display this title to the user.

Unlike in the previous incarnations of the format, storing private data here is not allowed, which means
that this section MUSTnot contain any properties not listed here. Any application-specific or otherwise
private data MUST be stored in [Private:PROGNAME] groups instead, as mentioned above.

2.2.2 [Events]

The most important section, [Events], lists all the actual subtitle lines in the file. The syntax has been
radically simplified from previous incarnations of the format, and now consist of only five fields. Each
line is represented as:

Line: start,end,style,user,content
Where:

e Start: The start time of the line. See below for the timestamp format. A line is only displayed if
the timestamp of the current frame is greater than or equal to the start time. That is, start time is
inclusive.

e End: The end time of the line. It follows the same format as the start time. The line is only
displayed if the timestamp of the current frame is lesser than the end time. That is, end time is
exclusive. In particular, it means that a line whose start time is equal to its end time will never be
displayed. If the end time is earlier than the start time, the renderer MAY issue a warning, but it
SHOULD render the remaining lines regardless of the issue.

e Style: The name of the default style used for this line. See the [Style] section below. If left blank,
the script’s global default style MUST be used. If an unknown style name is specified, the renderer
MUST fallback to default, and MAY issue a warning.

e User: This field is used by the program to store program-specific data in each line. Renderers
SHOULD ignore this (but MAY use it for application-specific extension features). This field SHOULD
be left blank if it’s not used. Note that whatever data is stored here MUSTnot contain any commas!

e Content: The actual text of the line. This contains actual text and override tags. See the section
on override tags for more information.

The timestamp format is h...h:mm:ss[.s...], that is, it begins with an integer of arbitrary length (up
to a maximum of 4 digits) representing the number of hours, followed by a one-digit or two-digit
integer representing minutes, and a floating point number representing seconds. Leading zeroes in the
hours field MAY be ommitted. Localization is irrelevant: a period (“.”) is always used to separate the
decimal point. This way, 0:21:42.5 and 0000:21:42.5000 are equivalent, and both represent 0 hours,
21 minutes, 42 seconds and 500 miliseconds.

Spaces between each field MUST be ignored by all parsers. Any spaces at the beginning of the content
line SHOULD be stripped by any editing program. A hard space (see the overrides section) or empty
override block should be used if space at the start of a line is truly desirable. That is, the two following
lines are syntactically identical:

Line: 0:2:31.57 , 0:02:34.22 , , , Hello world of {\b1}AS5{\b0O}!
Line: 0:02:31.570,00:02:34.22,,,Hello world of {\b1}AS5{\bO}!

2.2.3 [Styles]

This is equivalent to the [V4 Styles] (and subsequent variations) from the Sub Station Alpha format.
Like [Events], it has been greatly simplified when compared to the previous formats, and now each
entry contains only three fields. They are declared as:

Style: name,parent,overrides
Where:

e Name: The name of this style. Style names are not case-sensitive, but MUST be unique. A script
with conflicting style names MUST be rejected by the parser. If the style name is “Default”, it will
be used for all lines that omit the style name. If there is no “Default” line, the renderer default is
used.

e Parent: The style from which the current style derives from. See below for more information.
Leaving this field blank means that the style derives from the renderer’s default style.

e Overrides: A list of override tags to define this style. See below.

Styles work in a very different way from the way they did on previous formats (with the notable
exception of ASS3, which actually implements this very same style based on this format, as “StyleEx”).
Instead of setting multiple parameters across many commas, you simply specify override tags. When
a line uses a style, it’s as if the overrides of the style were inserted right before the start of the line
contents.

Also, a style can inherit from another style, and define new overrides which are then appended to
those of the parent style. The parent style MUST have been declared BEFORE the style trying to use it
as a parent. If the parent doesn’t exist or wasn’t declared yet, the parser must refuse to parse the script.
This is important because otherwise you could get a “inheritance loop”, where styles derive from each
other in a cycle.

For example, see the following [Styles] group:

[Styles]

Style: Default,,\fn(Arial)\fs20

Style: Speech,,\fn(Respublica)\fs24\bord2\shad2\4a#80\2c#000000
Style: Actorl,Speech,\1c#B9C5E3

Style: Actor2,Speech,\1c#FFB3CF

Style: UglinessItself,Default,\fn(Comic Sans MS)

In the above fragment, the first style defines the Default style that will be used on all lines that don’t
set any style and the second style defines a base speech style that will be used for all actors (note that
it doesn’t inherit from Default, even though Default overrode the renderer’s default, that one is still
used for style definitions).

The third and fourth styles are based on the second, and simply assign different colours to it. They
will both have all properties of Speech, and only differ in primary colour. Finally, the last example
shows how to derive from the overriden default. In this case, font size would be 20 points, regardless
of renderer’s default.

The two Actor styles could have been defined without a parent style as follows:
[Styles]

Style: Actorl,,\fn(Respublica)\fs24\bord2\shad2\4a#80\2c#000000\1c#BIC5E3
Style: Actor2,,\fn(Respublica)\fs24\bord2\shad2\4a#80\2c#000000\1c#FFB3CF

Since all that deriving a style from another does is append the new tags to the end of the previous, this
way of declaring styles is identical to the one above, but is more verbose.

If no Default style is defined, the renderer MUST choose its own defaults to render the text with. These
are entirely arbitrary and can be set to anything, but the renderer SHOULD let the user set his own
defaults. A simple Sans-Serif font with white text and black borders is recommended.

2.2.4 [Resources]

The new [Resources] section can be used to store information on external file resources, such as images
and fonts. The general syntax is:

Resource: type,name,path
Where:

e Type: Must be either “font” or “image”. Any other types MUST be ignored by the parser.

e Name: An unique name identifying this resource. For fonts, it must correspond to the font name,
e.g., “Verdana”. For images, it’s the name that the file will be reffered as in the rest of the script.
If there is already a resource with this same name, the parser MUST abort the parsing.

e Path: The location of the file relative to the subtitles. This MUST be a relative path for external
.as5 files, or a container-specific string for AS5 multiplexed into a container. The relative path
MUST use forward slashes and be case-sensitive, in order to avoid UNIX compatibility issues.

3 Style Overrides

3.1 General Information on Override Tags

As with previous formats, AS5 uses override tags to set the style for lines. Also, it uses those same tags
to set style definitions themselves (see above). Although many tags were imported from Advanced Sub
Station Alpha, do not assume that they behave exactly the same. Some had their behavior changed or
properly defined. Also, AS5 defines many new tags in addition to the old ones.

All tags must be inserted between a pair of curly brackets ({}), except on style definitions. A pair
can contain any number of override tags inside it. They should be listed one after the other, with no
spaces or any other kind of separator between them. Tags then affect all text that follows it, unless
re-overriden or reset by the \r tag. For example:

{\fn(Verdana) \fs26\c#FFA040}Welcome to {\b1}AS5{\b0}!

In the following example, the first override block affects the entire text, but only “AS5” is bolded.

Some tags might begin with a # in their names. This means that there are actually five variations of
this specific tag, the tag with # replaced with a number from 1 to 4 (inclusive) or without it altogether
- in that case, the tag is assumed to mean the 1 variation. Those numbers represent the four different
colours available on any given line:

1 - Primary colour, used for the main face of the text.

2 - Secondary colour, used on karaoke. See the karaoke tags for more information.

e 3 - Border colour. This is the colour of the border that outlines the text. See the \bord tag for
more information.

4 - Shadow colour. This is the colour of the shadow dropped by the text. See the \shad tag for
more information.

So, for example, you would use \1lc or \c to set the primary colour, or \3c to set the colour of the
border. \#c, however, does not exist in itself.

When a tag requires a floating point parameter, the decimal part must be specified using a period (.);
never a comma. When a tag requires a colour parameter, it is given in HTML hexadecimal code, which
is # followed by a 6-digit hexadecimal string, where the first two digits represent the red component,
the next two the green component, and the last two the blue component (#RRGGBB). Sub Station
Alpha style (Visual Basic hexadecimal) is not supported - if a parser finds any colour in &HBBGGRR&
format, it MUST issue an error.

3.2 Sub Station Alpha Tags

TODO: Write me

3.3 Advanced Sub Station Alpha Tags

TODO: Write me

3.4 ASS Property Tags

These tags replace the old style and dialogue settings that were rarely used and generally only made
the file more verbose and harder to read.

3.4.1 \left

TODO: Write me

3.4.2 \right

TODO: Write me

3.4.3 \top

TODO: Write me

3.4.4 \bottom

TODO: Write me

3.4.5 \Dbordstyle

TODO: Write me

3.4.6 \effect

TODO: Write me. Is this really desirable?

3.4.7 \relative

TODO: Write me

3.4.8 \vertical

TODO: Write me

3.5 ASS5 Distortion Tags

These are tags characterized by the fact that they distort the shape of the text itself. They were designed
to enhance the flexibility of the format while dealing with unusually-shaped imagery.

3.5.1 \distort

TODO: Write me

3.5.2 \Dbaseline

TODO: Write me

3.5.3 \bls

TODO: Write me

3.5.4 \fsc

TODO: Write me

3.5.5 \fay

TODO: Write me

3.5.6 \fax

TODO: Write me

3.6 ASS5 Rastering Tags

These tags affect how the subtitles are rasterized, that is, they affect things such as colour, blurring,
etc.

3.6.1 \#vc

TODO: Write me

3.6.2 \#blend

TODO: Write me

3.6.3 \iclip

TODO: Write me

10

3.6.4 \blur

TODO: Write me

3.7 AS5 Advanced Tags

These are more advanced tags, which might prove to be fairly complex to implement. They include
things such as ruby text support (also known as furigana, when used with Japanese Kanji).

TODO: Write me

11

4 Renderer Behaviour Specification

TODO: Write this section

12

5 Container Multiplexing Specification

5.1 Matroska

Storage of AS5 files in Matroska files is similar to how similar formats are stored.[11] The Codec ID
used is S_.TEXT/AS5

First, the entire file is converted to UTF-8 (if it isn’t already UTF-8). Then, all sections other than
[Events] and [Resources] are stored on the CodecPrivate element. For the [Resources] section, each line
is parsed and files are converted to Matroska file attachments. TODO: Specify this more clearly.

Finally, each line in the [Events] section is read and stored each in a block. The start and end fields
are parsed (see the specifications on the section describing [Events]) and set as the TimeStamp and
BlockDuration elements. The line itself is then stored in the following format:

Line: readOrder,style,userData,contents

Where readOrder is the number that the line had on the file. This is necessary so the file can be
demultiplexed back in its original order, since lines will be stored in chronological order while inside
the Matroska file. The remaining fields should just be copied from the original line.

13

References

[1] Rodrigo Braz Monteiro, Niels Martin Hansen, David Lamparter et al., Aegisub. Application, 2005-
2007.
http://www.aegisub.net/

[2] David Lamparter, asa. Application, 2004-2007.
http://asa.diac24.net/

[3] Kotus, Sub Station Alpha. Website, 1997-2003.
http://web.archive.org/web/*/http://www.eswat.demon.co.uk/substation.html

[4] #Anime-Fansubs, Advanced Sub Station Alpha.
http://www.anime-fansubs.org
http://moodub.free.fr/video/ass-specs.doc

[5] Gabest, VSFilter. Application, 2003-2007.
http://sourceforge.net/projects/guliverkli/

[6] David Lamparter, Advanced Sub Station Alpha 3. Website, 2007.
http://asa.diac24.net/ass3.pdf

[7]1 The Matroska project. Website.
http://www.matroska.org/

[8] The Internet Society, RFC 3629, “UTFE-8, a transformation format of ISO 10646”. Website, 2003.
http://tools.ietf.org/html/rfc3629

[9] The Internet Society, RFC 2781, “UTF-16, an encoding of ISO 10646”. Website, 2000.
http://tools.ietf.org/html/rfc2781

[10] Unicode, Inc, The Unicode Standard, Chapter 13. PDF, 1991-2000.
http://www.unicode.org/unicode/uni2book/ch13.pdf

[11] The Matroska project, specification for SSA/ASS subtitle formats. Website.
http://www.matroska.org/technical/specs/subtitles/ssa.html

14

http://www.aegisub.net/
http://asa.diac24.net/
http://web.archive.org/web/*/http://www.eswat.demon.co.uk/substation.html
http://www.anime-fansubs.org
http://moodub.free.fr/video/ass-specs.doc
http://sourceforge.net/projects/guliverkli/
http://asa.diac24.net/ass3.pdf
http://www.matroska.org/
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc2781
http://www.unicode.org/unicode/uni2book/ch13.pdf
http://www.matroska.org/technical/specs/subtitles/ssa.html

	Abstract
	AS5 Files
	File Format
	File Structure
	[AS5]
	[Events]
	[Styles]
	[Resources]

	Style Overrides
	General Information on Override Tags
	Sub Station Alpha Tags
	Advanced Sub Station Alpha Tags
	AS5 Property Tags
	\left
	\right
	\top
	\bottom
	\bordstyle
	\effect
	\relative
	\vertical

	AS5 Distortion Tags
	\distort
	\baseline
	\bls
	\fsc
	\fay
	\fax

	AS5 Rastering Tags
	\#vc
	\#blend
	\iclip
	\blur

	AS5 Advanced Tags

	Renderer Behaviour Specification
	Container Multiplexing Specification
	Matroska

	References

