Copyright © 2006-2007 Lua.org, PUC-Rio. Freely available under the terms of the Lua license.
Lua is an extension programming language designed to support general procedural programming with data description facilities. It also offers good support for object-oriented programming, functional programming, and data-driven programming. Lua is intended to be used as a powerful, light-weight scripting language for any program that needs one. Lua is implemented as a library, written in clean C (that is, in the common subset of ANSI C and C++).
Being an extension language, Lua has no notion of a "main" program:
it only works embedded in a host client,
called the embedding program or simply the host.
This host program can invoke functions to execute a piece of Lua code,
can write and read Lua variables,
and can register C functions to be called by Lua code.
Through the use of C functions, Lua can be augmented to cope with
a wide range of different domains,
thus creating customized programming languages sharing a syntactical framework.
The Lua distribution includes a sample host program called lua
,
which uses the Lua library to offer a complete, stand-alone Lua interpreter.
Lua is free software,
and is provided as usual with no guarantees,
as stated in its license.
The implementation described in this manual is available
at Lua's official web site, www.lua.org
.
Like any other reference manual, this document is dry in places. For a discussion of the decisions behind the design of Lua, see the technical papers available at Lua's web site. For a detailed introduction to programming in Lua, see Roberto's book, Programming in Lua (Second Edition).
This section describes the lexis, the syntax, and the semantics of Lua. In other words, this section describes which tokens are valid, how they can be combined, and what their combinations mean.
The language constructs will be explained using the usual extended BNF notation, in which {a} means 0 or more a's, and [a] means an optional a. Non-terminals are shown like non-terminal, keywords are shown like kword, and other terminal symbols are shown like `=´. The complete syntax of Lua can be found at the end of this manual.
Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not beginning with a digit. This coincides with the definition of names in most languages. (The definition of letter depends on the current locale: any character considered alphabetic by the current locale can be used in an identifier.) Identifiers are used to name variables and table fields.
The following keywords are reserved and cannot be used as names:
and break do else elseif end false for function if in local nil not or repeat return then true until while
Lua is a case-sensitive language:
and
is a reserved word, but And
and AND
are two different, valid names.
As a convention, names starting with an underscore followed by
uppercase letters (such as _VERSION
)
are reserved for internal global variables used by Lua.
The following strings denote other tokens:
+ - * / % ^ # == ~= <= >= < > = ( ) { } [ ] ; : , . .. ...
Literal strings
can be delimited by matching single or double quotes,
and can contain the following C-like escape sequences:
'\a
' (bell),
'\b
' (backspace),
'\f
' (form feed),
'\n
' (newline),
'\r
' (carriage return),
'\t
' (horizontal tab),
'\v
' (vertical tab),
'\\
' (backslash),
'\"
' (quotation mark [double quote]),
and '\'
' (apostrophe [single quote]).
Moreover, a backslash followed by a real newline
results in a newline in the string.
A character in a string may also be specified by its numerical value
using the escape sequence \ddd
,
where ddd is a sequence of up to three decimal digits.
(Note that if a numerical escape is to be followed by a digit,
it must be expressed using exactly three digits.)
Strings in Lua may contain any 8-bit value, including embedded zeros,
which can be specified as '\0
'.
To put a double (single) quote, a newline, a backslash, or an embedded zero inside a literal string enclosed by double (single) quotes you must use an escape sequence. Any other character may be directly inserted into the literal. (Some control characters may cause problems for the file system, but Lua has no problem with them.)
Literal strings can also be defined using a long format
enclosed by long brackets.
We define an opening long bracket of level n as an opening
square bracket followed by n equal signs followed by another
opening square bracket.
So, an opening long bracket of level 0 is written as [[
,
an opening long bracket of level 1 is written as [=[
,
and so on.
A closing long bracket is defined similarly;
for instance, a closing long bracket of level 4 is written as ]====]
.
A long string starts with an opening long bracket of any level and
ends at the first closing long bracket of the same level.
Literals in this bracketed form may run for several lines,
do not interpret any escape sequences,
and ignore long brackets of any other level.
They may contain anything except a closing bracket of the proper level.
For convenience,
when the opening long bracket is immediately followed by a newline,
the newline is not included in the string.
As an example, in a system using ASCII
(in which 'a
' is coded as 97,
newline is coded as 10, and '1
' is coded as 49),
the five literals below denote the same string:
a = 'alo\n123"' a = "alo\n123\"" a = '\97lo\10\04923"' a = [[alo 123"]] a = [==[ alo 123"]==]
A numerical constant may be written with an optional decimal part
and an optional decimal exponent.
Lua also accepts integer hexadecimal constants,
by prefixing them with 0x
.
Examples of valid numerical constants are
3 3.0 3.1416 314.16e-2 0.31416E1 0xff 0x56
A comment starts with a double hyphen (--
)
anywhere outside a string.
If the text immediately after --
is not an opening long bracket,
the comment is a short comment,
which runs until the end of the line.
Otherwise, it is a long comment,
which runs until the corresponding closing long bracket.
Long comments are frequently used to disable code temporarily.
Lua is a dynamically typed language. This means that variables do not have types; only values do. There are no type definitions in the language. All values carry their own type.
All values in Lua are first-class values. This means that all values can be stored in variables, passed as arguments to other functions, and returned as results.
There are eight basic types in Lua:
nil, boolean, number,
string, function, userdata,
thread, and table.
Nil is the type of the value nil,
whose main property is to be different from any other value;
it usually represents the absence of a useful value.
Boolean is the type of the values false and true.
Both nil and false make a condition false;
any other value makes it true.
Number represents real (double-precision floating-point) numbers.
(It is easy to build Lua interpreters that use other
internal representations for numbers,
such as single-precision float or long integers;
see file luaconf.h
.)
String represents arrays of characters.
Lua is 8-bit clean:
strings may contain any 8-bit character,
including embedded zeros ('\0
') (see §2.1).
Lua can call (and manipulate) functions written in Lua and functions written in C (see §2.5.8).
The type userdata is provided to allow arbitrary C data to be stored in Lua variables. This type corresponds to a block of raw memory and has no pre-defined operations in Lua, except assignment and identity test. However, by using metatables, the programmer can define operations for userdata values (see §2.8). Userdata values cannot be created or modified in Lua, only through the C API. This guarantees the integrity of data owned by the host program.
The type thread represents independent threads of execution and it is used to implement coroutines (see §2.11). Do not confuse Lua threads with operating-system threads. Lua supports coroutines on all systems, even those that do not support threads.
The type table implements associative arrays,
that is, arrays that can be indexed not only with numbers,
but with any value (except nil).
Tables can be heterogeneous;
that is, they can contain values of all types (except nil).
Tables are the sole data structuring mechanism in Lua;
they may be used to represent ordinary arrays,
symbol tables, sets, records, graphs, trees, etc.
To represent records, Lua uses the field name as an index.
The language supports this representation by
providing a.name
as syntactic sugar for a["name"]
.
There are several convenient ways to create tables in Lua
(see §2.5.7).
Like indices, the value of a table field can be of any type (except nil). In particular, because functions are first-class values, table fields may contain functions. Thus tables may also carry methods (see §2.5.9).
Tables, functions, threads, and (full) userdata values are objects: variables do not actually contain these values, only references to them. Assignment, parameter passing, and function returns always manipulate references to such values; these operations do not imply any kind of copy.
The library function type
returns a string describing the type
of a given value.
Lua provides automatic conversion between
string and number values at run time.
Any arithmetic operation applied to a string tries to convert
this string to a number, following the usual conversion rules.
Conversely, whenever a number is used where a string is expected,
the number is converted to a string, in a reasonable format.
For complete control over how numbers are converted to strings,
use the format
function from the string library
(see string.format
).
Variables are places that store values. There are three kinds of variables in Lua: global variables, local variables, and table fields.
A single name can denote a global variable or a local variable (or a function's formal parameter, which is a particular kind of local variable):
var ::= Name
Name denotes identifiers, as defined in §2.1.
Any variable is assumed to be global unless explicitly declared as a local (see §2.4.7). Local variables are lexically scoped: local variables can be freely accessed by functions defined inside their scope (see §2.6).
Before the first assignment to a variable, its value is nil.
Square brackets are used to index a table:
var ::= prefixexp `[´ exp `]´
The meaning of accesses to global variables
and table fields can be changed via metatables.
An access to an indexed variable t[i]
is equivalent to
a call gettable_event(t,i)
.
(See §2.8 for a complete description of the
gettable_event
function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)
The syntax var.Name
is just syntactic sugar for
var["Name"]
:
var ::= prefixexp `.´ Name
All global variables live as fields in ordinary Lua tables,
called environment tables or simply
environments (see §2.9).
Each function has its own reference to an environment,
so that all global variables in this function
will refer to this environment table.
When a function is created,
it inherits the environment from the function that created it.
To get the environment table of a Lua function,
you call getfenv
.
To replace it,
you call setfenv
.
(You can only manipulate the environment of C functions
through the debug library; (see §5.9).)
An access to a global variable x
is equivalent to _env.x
,
which in turn is equivalent to
gettable_event(_env, "x")
where _env
is the environment of the running function.
(See §2.8 for a complete description of the
gettable_event
function.
This function is not defined or callable in Lua.
Similarly, the _env
variable is not defined in Lua.
We use them here only for explanatory purposes.)
Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set includes assignment, control structures, function calls, and variable declarations.
The unit of execution of Lua is called a chunk. A chunk is simply a sequence of statements, which are executed sequentially. Each statement can be optionally followed by a semicolon:
chunk ::= {stat [`;´]}
There are no empty statements and thus ';;
' is not legal.
Lua handles a chunk as the body of an anonymous function with a variable number of arguments (see §2.5.9). As such, chunks can define local variables, receive arguments, and return values.
A chunk may be stored in a file or in a string inside the host program. When a chunk is executed, first it is pre-compiled into instructions for a virtual machine, and then the compiled code is executed by an interpreter for the virtual machine.
Chunks may also be pre-compiled into binary form;
see program luac
for details.
Programs in source and compiled forms are interchangeable;
Lua automatically detects the file type and acts accordingly.
A block is a list of statements; syntactically, a block is the same as a chunk:
block ::= chunk
A block may be explicitly delimited to produce a single statement:
stat ::= do block end
Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also sometimes used to add a return or break statement in the middle of another block (see §2.4.4).
Lua allows multiple assignment. Therefore, the syntax for assignment defines a list of variables on the left side and a list of expressions on the right side. The elements in both lists are separated by commas:
stat ::= varlist1 `=´ explist1 varlist1 ::= var {`,´ var} explist1 ::= exp {`,´ exp}
Expressions are discussed in §2.5.
Before the assignment, the list of values is adjusted to the length of the list of variables. If there are more values than needed, the excess values are thrown away. If there are fewer values than needed, the list is extended with as many nil's as needed. If the list of expressions ends with a function call, then all values returned by this call enter in the list of values, before the adjustment (except when the call is enclosed in parentheses; see §2.5).
The assignment statement first evaluates all its expressions and only then are the assignments performed. Thus the code
i = 3 i, a[i] = i+1, 20
sets a[3]
to 20, without affecting a[4]
because the i
in a[i]
is evaluated (to 3)
before it is assigned 4.
Similarly, the line
x, y = y, x
exchanges the values of x
and y
.
The meaning of assignments to global variables
and table fields can be changed via metatables.
An assignment to an indexed variable t[i] = val
is equivalent to
settable_event(t,i,val)
.
(See §2.8 for a complete description of the
settable_event
function.
This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)
An assignment to a global variable x = val
is equivalent to the assignment
_env.x = val
,
which in turn is equivalent to
settable_event(_env, "x", val)
where _env
is the environment of the running function.
(The _env
variable is not defined in Lua.
We use it here only for explanatory purposes.)
The control structures if, while, and repeat have the usual meaning and familiar syntax:
stat ::= while exp do block end stat ::= repeat block until exp stat ::= if exp then block {elseif exp then block} [else block] end
Lua also has a for statement, in two flavors (see §2.4.5).
The condition expression of a control structure may return any value. Both false and nil are considered false. All values different from nil and false are considered true (in particular, the number 0 and the empty string are also true).
In the repeat–until loop, the inner block does not end at the until keyword, but only after the condition. So, the condition can refer to local variables declared inside the loop block.
The return statement is used to return values from a function or a chunk (which is just a function). Functions and chunks may return more than one value, so the syntax for the return statement is
stat ::= return [explist1]
The break statement is used to terminate the execution of a while, repeat, or for loop, skipping to the next statement after the loop:
stat ::= break
A break ends the innermost enclosing loop.
The return and break
statements can only be written as the last statement of a block.
If it is really necessary to return or break in the
middle of a block,
then an explicit inner block can be used,
as in the idioms
do return end
and do break end
,
because now return and break are the last statements in
their (inner) blocks.
The for statement has two forms: one numeric and one generic.
The numeric for loop repeats a block of code while a control variable runs through an arithmetic progression. It has the following syntax:
stat ::= for Name `=´ exp `,´ exp [`,´ exp] do block end
The block is repeated for name starting at the value of the first exp, until it passes the second exp by steps of the third exp. More precisely, a for statement like
for v = e1, e2, e3 do block end
is equivalent to the code:
do local var, limit, step = tonumber(e1), tonumber(e2), tonumber(e3) if not (var and limit and step) then error() end while (step > 0 and var <= limit) or (step <= 0 and var >= limit) do local v = var block var = var + step end end
Note the following:
var
, limit
, and step
are invisible variables.
The names are here for explanatory purposes only.
v
is local to the loop;
you cannot use its value after the for ends or is broken.
If you need this value,
assign it to another variable before breaking or exiting the loop.
The generic for statement works over functions, called iterators. On each iteration, the iterator function is called to produce a new value, stopping when this new value is nil. The generic for loop has the following syntax:
stat ::= for namelist in explist1 do block end namelist ::= Name {`,´ Name}
A for statement like
for var_1, ···, var_n in explist do block end
is equivalent to the code:
do local f, s, var = explist while true do local var_1, ···, var_n = f(s, var) var = var_1 if var == nil then break end block end end
Note the following:
explist
is evaluated only once.
Its results are an iterator function,
a state,
and an initial value for the first iterator variable.
f
, s
, and var
are invisible variables.
The names are here for explanatory purposes only.
var_i
are local to the loop;
you cannot use their values after the for ends.
If you need these values,
then assign them to other variables before breaking or exiting the loop.
To allow possible side-effects, function calls can be executed as statements:
stat ::= functioncall
In this case, all returned values are thrown away. Function calls are explained in §2.5.8.
Local variables may be declared anywhere inside a block. The declaration may include an initial assignment:
stat ::= local namelist [`=´ explist1]
If present, an initial assignment has the same semantics of a multiple assignment (see §2.4.3). Otherwise, all variables are initialized with nil.
A chunk is also a block (see §2.4.1), and so local variables can be declared in a chunk outside any explicit block. The scope of such local variables extends until the end of the chunk.
The visibility rules for local variables are explained in §2.6.
The basic expressions in Lua are the following:
exp ::= prefixexp exp ::= nil | false | true exp ::= Number exp ::= String exp ::= function exp ::= tableconstructor exp ::= `...´ exp ::= exp binop exp exp ::= unop exp prefixexp ::= var | functioncall | `(´ exp `)´
Numbers and literal strings are explained in §2.1;
variables are explained in §2.3;
function definitions are explained in §2.5.9;
function calls are explained in §2.5.8;
table constructors are explained in §2.5.7.
Vararg expressions,
denoted by three dots ('...
'), can only be used when
directly inside a vararg function;
they are explained in §2.5.9.
Binary operators comprise arithmetic operators (see §2.5.1), relational operators (see §2.5.2), logical operators (see §2.5.3), and the concatenation operator (see §2.5.4). Unary operators comprise the unary minus (see §2.5.1), the unary not (see §2.5.3), and the unary length operator (see §2.5.5).
Both function calls and vararg expressions may result in multiple values. If the expression is used as a statement (see §2.4.6) (only possible for function calls), then its return list is adjusted to zero elements, thus discarding all returned values. If the expression is used as the last (or the only) element of a list of expressions, then no adjustment is made (unless the call is enclosed in parentheses). In all other contexts, Lua adjusts the result list to one element, discarding all values except the first one.
Here are some examples:
f() -- adjusted to 0 results g(f(), x) -- f() is adjusted to 1 result g(x, f()) -- g gets x plus all results from f() a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil) a,b = ... -- a gets the first vararg parameter, b gets -- the second (both a and b may get nil if there -- is no corresponding vararg parameter) a,b,c = x, f() -- f() is adjusted to 2 results a,b,c = f() -- f() is adjusted to 3 results return f() -- returns all results from f() return ... -- returns all received vararg parameters return x,y,f() -- returns x, y, and all results from f() {f()} -- creates a list with all results from f() {...} -- creates a list with all vararg parameters {f(), nil} -- f() is adjusted to 1 result
An expression enclosed in parentheses always results in only one value.
Thus,
(f(x,y,z))
is always a single value,
even if f
returns several values.
(The value of (f(x,y,z))
is the first value returned by f
or nil if f
does not return any values.)
Lua supports the usual arithmetic operators:
the binary +
(addition),
-
(subtraction), *
(multiplication),
/
(division), %
(modulo), and ^
(exponentiation);
and unary -
(negation).
If the operands are numbers, or strings that can be converted to
numbers (see §2.2.1),
then all operations have the usual meaning.
Exponentiation works for any exponent.
For instance, x^(-0.5)
computes the inverse of the square root of x
.
Modulo is defined as
a % b == a - math.floor(a/b)*b
That is, it is the remainder of a division that rounds the quotient towards minus infinity.
The relational operators in Lua are
== ~= < > <= >=
These operators always result in false or true.
Equality (==
) first compares the type of its operands.
If the types are different, then the result is false.
Otherwise, the values of the operands are compared.
Numbers and strings are compared in the usual way.
Objects (tables, userdata, threads, and functions)
are compared by reference:
two objects are considered equal only if they are the same object.
Every time you create a new object
(a table, userdata, thread, or function),
this new object is different from any previously existing object.
You can change the way that Lua compares tables and userdata by using the "eq" metamethod (see §2.8).
The conversion rules of §2.2.1
do not apply to equality comparisons.
Thus, "0"==0
evaluates to false,
and t[0]
and t["0"]
denote different
entries in a table.
The operator ~=
is exactly the negation of equality (==
).
The order operators work as follows. If both arguments are numbers, then they are compared as such. Otherwise, if both arguments are strings, then their values are compared according to the current locale. Otherwise, Lua tries to call the "lt" or the "le" metamethod (see §2.8).
The logical operators in Lua are and, or, and not. Like the control structures (see §2.4.4), all logical operators consider both false and nil as false and anything else as true.
The negation operator not always returns false or true. The conjunction operator and returns its first argument if this value is false or nil; otherwise, and returns its second argument. The disjunction operator or returns its first argument if this value is different from nil and false; otherwise, or returns its second argument. Both and and or use short-cut evaluation; that is, the second operand is evaluated only if necessary. Here are some examples:
10 or 20 --> 10 10 or error() --> 10 nil or "a" --> "a" nil and 10 --> nil false and error() --> false false and nil --> false false or nil --> nil 10 and 20 --> 20
(In this manual, --> indicates the result of the preceding expression.)
The string concatenation operator in Lua is
denoted by two dots ('..
').
If both operands are strings or numbers, then they are converted to
strings according to the rules mentioned in §2.2.1.
Otherwise, the "concat" metamethod is called (see §2.8).
The length operator is denoted by the unary operator #
.
The length of a string is its number of bytes
(that is, the usual meaning of string length when each
character is one byte).
The length of a table t
is defined to be any
integer index n
such that t[n]
is not nil and t[n+1]
is nil;
moreover, if t[1]
is nil, n
may be zero.
For a regular array, with non-nil values from 1 to a given n
,
its length is exactly that n
,
the index of its last value.
If the array has "holes"
(that is, nil values between other non-nil values),
then #t
may be any of the indices that
directly precedes a nil value
(that is, it may consider any such nil value as the end of
the array).
Operator precedence in Lua follows the table below, from lower to higher priority:
or and < > <= >= ~= == .. + - * / % not # - (unary) ^
As usual,
you can use parentheses to change the precedences of an expression.
The concatenation ('..
') and exponentiation ('^
')
operators are right associative.
All other binary operators are left associative.
Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is created. Constructors can be used to create empty tables, or to create a table and initialize some of its fields. The general syntax for constructors is
tableconstructor ::= `{´ [fieldlist] `}´ fieldlist ::= field {fieldsep field} [fieldsep] field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp fieldsep ::= `,´ | `;´
Each field of the form [exp1] = exp2
adds to the new table an entry
with key exp1
and value exp2
.
A field of the form name = exp
is equivalent to
["name"] = exp
.
Finally, fields of the form exp
are equivalent to
[i] = exp
, where i
are consecutive numerical integers,
starting with 1.
Fields in the other formats do not affect this counting.
For example,
a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }
is equivalent to
do local t = {} t[f(1)] = g t[1] = "x" -- 1st exp t[2] = "y" -- 2nd exp t.x = 1 -- t["x"] = 1 t[3] = f(x) -- 3rd exp t[30] = 23 t[4] = 45 -- 4th exp a = t end
If the last field in the list has the form exp
and the expression is a function call or a vararg expression,
then all values returned by this expression enter the list consecutively
(see §2.5.8).
To avoid this,
enclose the function call (or the vararg expression)
in parentheses (see §2.5).
The field list may have an optional trailing separator, as a convenience for machine-generated code.
A function call in Lua has the following syntax:
functioncall ::= prefixexp args
In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type function, then this function is called with the given arguments. Otherwise, the prefixexp "call" metamethod is called, having as first parameter the value of prefixexp, followed by the original call arguments (see §2.8).
The form
functioncall ::= prefixexp `:´ Name args
can be used to call "methods".
A call v:name(args)
is syntactic sugar for v.name(v,args)
,
except that v
is evaluated only once.
Arguments have the following syntax:
args ::= `(´ [explist1] `)´ args ::= tableconstructor args ::= String
All argument expressions are evaluated before the call.
A call of the form f{fields}
is
syntactic sugar for f({fields})
;
that is, the argument list is a single new table.
A call of the form f'string'
(or f"string"
or f[[string]]
)
is syntactic sugar for f('string')
;
that is, the argument list is a single literal string.
As an exception to the free-format syntax of Lua,
you cannot put a line break before the '(
' in a function call.
This restriction avoids some ambiguities in the language.
If you write
a = f (g).x(a)
Lua would see that as a single statement, a = f(g).x(a)
.
So, if you want two statements, you must add a semi-colon between them.
If you actually want to call f
,
you must remove the line break before (g)
.
A call of the form return
functioncall is called
a tail call.
Lua implements proper tail calls
(or proper tail recursion):
in a tail call,
the called function reuses the stack entry of the calling function.
Therefore, there is no limit on the number of nested tail calls that
a program can execute.
However, a tail call erases any debug information about the
calling function.
Note that a tail call only happens with a particular syntax,
where the return has one single function call as argument;
this syntax makes the calling function return exactly
the returns of the called function.
So, none of the following examples are tail calls:
return (f(x)) -- results adjusted to 1 return 2 * f(x) return x, f(x) -- additional results f(x); return -- results discarded return x or f(x) -- results adjusted to 1
The syntax for function definition is
function ::= function funcbody funcbody ::= `(´ [parlist1] `)´ block end
The following syntactic sugar simplifies function definitions:
stat ::= function funcname funcbody stat ::= local function Name funcbody funcname ::= Name {`.´ Name} [`:´ Name]
The statement
function f () body end
translates to
f = function () body end
The statement
function t.a.b.c.f () body end
translates to
t.a.b.c.f = function () body end
The statement
local function f () body end
translates to
local f; f = function () body end
not to
local f = function () body end
(This only makes a difference when the body of the function
contains references to f
.)
A function definition is an executable expression, whose value has type function. When Lua pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes the function definition, the function is instantiated (or closed). This function instance (or closure) is the final value of the expression. Different instances of the same function may refer to different external local variables and may have different environment tables.
Parameters act as local variables that are initialized with the argument values:
parlist1 ::= namelist [`,´ `...´] | `...´
When a function is called,
the list of arguments is adjusted to
the length of the list of parameters,
unless the function is a variadic or vararg function,
which is
indicated by three dots ('...
') at the end of its parameter list.
A vararg function does not adjust its argument list;
instead, it collects all extra arguments and supplies them
to the function through a vararg expression,
which is also written as three dots.
The value of this expression is a list of all actual extra arguments,
similar to a function with multiple results.
If a vararg expression is used inside another expression
or in the middle of a list of expressions,
then its return list is adjusted to one element.
If the expression is used as the last element of a list of expressions,
then no adjustment is made
(unless the call is enclosed in parentheses).
As an example, consider the following definitions:
function f(a, b) end function g(a, b, ...) end function r() return 1,2,3 end
Then, we have the following mapping from arguments to parameters and to the vararg expression:
CALL PARAMETERS f(3) a=3, b=nil f(3, 4) a=3, b=4 f(3, 4, 5) a=3, b=4 f(r(), 10) a=1, b=10 f(r()) a=1, b=2 g(3) a=3, b=nil, ... --> (nothing) g(3, 4) a=3, b=4, ... --> (nothing) g(3, 4, 5, 8) a=3, b=4, ... --> 5 8 g(5, r()) a=5, b=1, ... --> 2 3
Results are returned using the return statement (see §2.4.4). If control reaches the end of a function without encountering a return statement, then the function returns with no results.
The colon syntax
is used for defining methods,
that is, functions that have an implicit extra parameter self
.
Thus, the statement
function t.a.b.c:f (params) body end
is syntactic sugar for
t.a.b.c.f = function (self, params) body end
Lua is a lexically scoped language. The scope of variables begins at the first statement after their declaration and lasts until the end of the innermost block that includes the declaration. Consider the following example:
x = 10 -- global variable do -- new block local x = x -- new 'x', with value 10 print(x) --> 10 x = x+1 do -- another block local x = x+1 -- another 'x' print(x) --> 12 end print(x) --> 11 end print(x) --> 10 (the global one)
Notice that, in a declaration like local x = x
,
the new x
being declared is not in scope yet,
and so the second x
refers to the outside variable.
Because of the lexical scoping rules, local variables can be freely accessed by functions defined inside their scope. A local variable used by an inner function is called an upvalue, or external local variable, inside the inner function.
Notice that each execution of a local statement defines new local variables. Consider the following example:
a = {} local x = 20 for i=1,10 do local y = 0 a[i] = function () y=y+1; return x+y end end
The loop creates ten closures
(that is, ten instances of the anonymous function).
Each of these closures uses a different y
variable,
while all of them share the same x
.
Because Lua is an embedded extension language,
all Lua actions start from C code in the host program
calling a function from the Lua library (see lua_pcall
).
Whenever an error occurs during Lua compilation or execution,
control returns to C,
which can take appropriate measures
(such as printing an error message).
Lua code can explicitly generate an error by calling the
error
function.
If you need to catch errors in Lua,
you can use the pcall
function.
Every value in Lua may have a metatable.
This metatable is an ordinary Lua table
that defines the behavior of the original value
under certain special operations.
You can change several aspects of the behavior
of operations over a value by setting specific fields in its metatable.
For instance, when a non-numeric value is the operand of an addition,
Lua checks for a function in the field "__add"
in its metatable.
If it finds one,
Lua calls this function to perform the addition.
We call the keys in a metatable events
and the values metamethods.
In the previous example, the event is "add"
and the metamethod is the function that performs the addition.
You can query the metatable of any value
through the getmetatable
function.
You can replace the metatable of tables
through the setmetatable
function.
You cannot change the metatable of other types from Lua
(except using the debug library);
you must use the C API for that.
Tables and userdata have individual metatables (although multiple tables and userdata can share their metatables); values of all other types share one single metatable per type. So, there is one single metatable for all numbers, and for all strings, etc.
A metatable may control how an object behaves in arithmetic operations, order comparisons, concatenation, length operation, and indexing. A metatable can also define a function to be called when a userdata is garbage collected. For each of these operations Lua associates a specific key called an event. When Lua performs one of these operations over a value, it checks whether this value has a metatable with the corresponding event. If so, the value associated with that key (the metamethod) controls how Lua will perform the operation.
Metatables control the operations listed next.
Each operation is identified by its corresponding name.
The key for each operation is a string with its name prefixed by
two underscores, '__
';
for instance, the key for operation "add" is the
string "__add"
.
The semantics of these operations is better explained by a Lua function
describing how the interpreter executes the operation.
The code shown here in Lua is only illustrative;
the real behavior is hard coded in the interpreter
and it is much more efficient than this simulation.
All functions used in these descriptions
(rawget
, tonumber
, etc.)
are described in §5.1.
In particular, to retrieve the metamethod of a given object,
we use the expression
metatable(obj)[event]
This should be read as
rawget(getmetatable(obj) or {}, event)
That is, the access to a metamethod does not invoke other metamethods, and the access to objects with no metatables does not fail (it simply results in nil).
+
operation.
The function getbinhandler
below defines how Lua chooses a handler
for a binary operation.
First, Lua tries the first operand.
If its type does not define a handler for the operation,
then Lua tries the second operand.
function getbinhandler (op1, op2, event) return metatable(op1)[event] or metatable(op2)[event] end
By using this function,
the behavior of the op1 + op2
is
function add_event (op1, op2) local o1, o2 = tonumber(op1), tonumber(op2) if o1 and o2 then -- both operands are numeric? return o1 + o2 -- '+' here is the primitive 'add' else -- at least one of the operands is not numeric local h = getbinhandler(op1, op2, "__add") if h then -- call the handler with both operands return h(op1, op2) else -- no handler available: default behavior error(···) end end end
-
operation.
Behavior similar to the "add" operation.
*
operation.
Behavior similar to the "add" operation.
/
operation.
Behavior similar to the "add" operation.
%
operation.
Behavior similar to the "add" operation,
with the operation
o1 - floor(o1/o2)*o2
as the primitive operation.
^
(exponentiation) operation.
Behavior similar to the "add" operation,
with the function pow
(from the C math library)
as the primitive operation.
-
operation.
function unm_event (op) local o = tonumber(op) if o then -- operand is numeric? return -o -- '-' here is the primitive 'unm' else -- the operand is not numeric. -- Try to get a handler from the operand local h = metatable(op).__unm if h then -- call the handler with the operand return h(op) else -- no handler available: default behavior error(···) end end end
..
(concatenation) operation.
function concat_event (op1, op2) if (type(op1) == "string" or type(op1) == "number") and (type(op2) == "string" or type(op2) == "number") then return op1 .. op2 -- primitive string concatenation else local h = getbinhandler(op1, op2, "__concat") if h then return h(op1, op2) else error(···) end end end
#
operation.
function len_event (op) if type(op) == "string" then return strlen(op) -- primitive string length elseif type(op) == "table" then return #op -- primitive table length else local h = metatable(op).__len if h then -- call the handler with the operand return h(op) else -- no handler available: default behavior error(···) end end end
See §2.5.5 for a description of the length of a table.
==
operation.
The function getcomphandler
defines how Lua chooses a metamethod
for comparison operators.
A metamethod only is selected when both objects
being compared have the same type
and the same metamethod for the selected operation.
function getcomphandler (op1, op2, event) if type(op1) ~= type(op2) then return nil end local mm1 = metatable(op1)[event] local mm2 = metatable(op2)[event] if mm1 == mm2 then return mm1 else return nil end end
The "eq" event is defined as follows:
function eq_event (op1, op2) if type(op1) ~= type(op2) then -- different types? return false -- different objects end if op1 == op2 then -- primitive equal? return true -- objects are equal end -- try metamethod local h = getcomphandler(op1, op2, "__eq") if h then return h(op1, op2) else return false end end
a ~= b
is equivalent to not (a == b)
.
<
operation.
function lt_event (op1, op2) if type(op1) == "number" and type(op2) == "number" then return op1 < op2 -- numeric comparison elseif type(op1) == "string" and type(op2) == "string" then return op1 < op2 -- lexicographic comparison else local h = getcomphandler(op1, op2, "__lt") if h then return h(op1, op2) else error(···); end end end
a > b
is equivalent to b < a
.
<=
operation.
function le_event (op1, op2) if type(op1) == "number" and type(op2) == "number" then return op1 <= op2 -- numeric comparison elseif type(op1) == "string" and type(op2) == "string" then return op1 <= op2 -- lexicographic comparison else local h = getcomphandler(op1, op2, "__le") if h then return h(op1, op2) else h = getcomphandler(op1, op2, "__lt") if h then return not h(op2, op1) else error(···); end end end end
a >= b
is equivalent to b <= a
.
Note that, in the absence of a "le" metamethod,
Lua tries the "lt", assuming that a <= b
is
equivalent to not (b < a)
.
table[key]
.
function gettable_event (table, key) local h if type(table) == "table" then local v = rawget(table, key) if v ~= nil then return v end h = metatable(table).__index if h == nil then return nil end else h = metatable(table).__index if h == nil then error(···); end end if type(h) == "function" then return h(table, key) -- call the handler else return h[key] -- or repeat operation on it end end
table[key] = value
.
function settable_event (table, key, value) local h if type(table) == "table" then local v = rawget(table, key) if v ~= nil then rawset(table, key, value); return end h = metatable(table).__newindex if h == nil then rawset(table, key, value); return end else h = metatable(table).__newindex if h == nil then error(···); end end if type(h) == "function" then return h(table, key,value) -- call the handler else h[key] = value -- or repeat operation on it end end
function function_event (func, ...) if type(func) == "function" then return func(...) -- primitive call else local h = metatable(func).__call if h then return h(func, ...) else error(···) end end end
Besides metatables, objects of types thread, function, and userdata have another table associated with them, called their environment. Like metatables, environments are regular tables and multiple objects can share the same environment.
Environments associated with userdata have no meaning for Lua. It is only a convenience feature for programmers to associate a table to a userdata.
Environments associated with threads are called
global environments.
They are used as the default environment for their threads and
non-nested functions created by the thread
(through loadfile
, loadstring
or load
)
and can be directly accessed by C code (see §3.3).
Environments associated with C functions can be directly accessed by C code (see §3.3). They are used as the default environment for other C functions created by the function.
Environments associated with Lua functions are used to resolve all accesses to global variables within the function (see §2.3). They are used as the default environment for other Lua functions created by the function.
You can change the environment of a Lua function or the
running thread by calling setfenv
.
You can get the environment of a Lua function or the running thread
by calling getfenv
.
To manipulate the environment of other objects
(userdata, C functions, other threads) you must
use the C API.
Lua performs automatic memory management. This means that you have to worry neither about allocating memory for new objects nor about freeing it when the objects are no longer needed. Lua manages memory automatically by running a garbage collector from time to time to collect all dead objects (that is, these objects that are no longer accessible from Lua). All objects in Lua are subject to automatic management: tables, userdata, functions, threads, and strings.
Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its garbage-collection cycles: the garbage-collector pause and the garbage-collector step multiplier.
The garbage-collector pause controls how long the collector waits before starting a new cycle. Larger values make the collector less aggressive. Values smaller than 1 mean the collector will not wait to start a new cycle. A value of 2 means that the collector waits for the total memory in use to double before starting a new cycle.
The step multiplier controls the relative speed of the collector relative to memory allocation. Larger values make the collector more aggressive but also increase the size of each incremental step. Values smaller than 1 make the collector too slow and may result in the collector never finishing a cycle. The default, 2, means that the collector runs at "twice" the speed of memory allocation.
You can change these numbers by calling lua_gc
in C
or collectgarbage
in Lua.
Both get percentage points as arguments
(so an argument of 100 means a real value of 1).
With these functions you can also control
the collector directly (e.g., stop and restart it).
Using the C API, you can set garbage-collector metamethods for userdata (see §2.8). These metamethods are also called finalizers. Finalizers allow you to coordinate Lua's garbage collection with external resource management (such as closing files, network or database connections, or freeing your own memory).
Garbage userdata with a field __gc
in their metatables are not
collected immediately by the garbage collector.
Instead, Lua puts them in a list.
After the collection,
Lua does the equivalent of the following function
for each userdata in that list:
function gc_event (udata) local h = metatable(udata).__gc if h then h(udata) end end
At the end of each garbage-collection cycle, the finalizers for userdata are called in reverse order of their creation, among those collected in that cycle. That is, the first finalizer to be called is the one associated with the userdata created last in the program.
A weak table is a table whose elements are weak references. A weak reference is ignored by the garbage collector. In other words, if the only references to an object are weak references, then the garbage collector will collect this object.
A weak table can have weak keys, weak values, or both.
A table with weak keys allows the collection of its keys,
but prevents the collection of its values.
A table with both weak keys and weak values allows the collection of
both keys and values.
In any case, if either the key or the value is collected,
the whole pair is removed from the table.
The weakness of a table is controlled by the
__mode
field of its metatable.
If the __mode
field is a string containing the character 'k
',
the keys in the table are weak.
If __mode
contains 'v
',
the values in the table are weak.
After you use a table as a metatable,
you should not change the value of its field __mode
.
Otherwise, the weak behavior of the tables controlled by this
metatable is undefined.
Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents an independent thread of execution. Unlike threads in multithread systems, however, a coroutine only suspends its execution by explicitly calling a yield function.
You create a coroutine with a call to coroutine.create
.
Its sole argument is a function
that is the main function of the coroutine.
The create
function only creates a new coroutine and
returns a handle to it (an object of type thread);
it does not start the coroutine execution.
When you first call coroutine.resume
,
passing as its first argument
the thread returned by coroutine.create
,
the coroutine starts its execution,
at the first line of its main function.
Extra arguments passed to coroutine.resume
are passed on
to the coroutine main function.
After the coroutine starts running,
it runs until it terminates or yields.
A coroutine can terminate its execution in two ways:
normally, when its main function returns
(explicitly or implicitly, after the last instruction);
and abnormally, if there is an unprotected error.
In the first case, coroutine.resume
returns true,
plus any values returned by the coroutine main function.
In case of errors, coroutine.resume
returns false
plus an error message.
A coroutine yields by calling coroutine.yield
.
When a coroutine yields,
the corresponding coroutine.resume
returns immediately,
even if the yield happens inside nested function calls
(that is, not in the main function,
but in a function directly or indirectly called by the main function).
In the case of a yield, coroutine.resume
also returns true,
plus any values passed to coroutine.yield
.
The next time you resume the same coroutine,
it continues its execution from the point where it yielded,
with the call to coroutine.yield
returning any extra
arguments passed to coroutine.resume
.
Like coroutine.create
,
the coroutine.wrap
function also creates a coroutine,
but instead of returning the coroutine itself,
it returns a function that, when called, resumes the coroutine.
Any arguments passed to this function
go as extra arguments to coroutine.resume
.
coroutine.wrap
returns all the values returned by coroutine.resume
,
except the first one (the boolean error code).
Unlike coroutine.resume
,
coroutine.wrap
does not catch errors;
any error is propagated to the caller.
As an example, consider the following code:
function foo (a) print("foo", a) return coroutine.yield(2*a) end co = coroutine.create(function (a,b) print("co-body", a, b) local r = foo(a+1) print("co-body", r) local r, s = coroutine.yield(a+b, a-b) print("co-body", r, s) return b, "end" end) print("main", coroutine.resume(co, 1, 10)) print("main", coroutine.resume(co, "r")) print("main", coroutine.resume(co, "x", "y")) print("main", coroutine.resume(co, "x", "y"))
When you run it, it produces the following output:
co-body 1 10 foo 2 main true 4 co-body r main true 11 -9 co-body x y main true 10 end main false cannot resume dead coroutine
This section describes the C API for Lua, that is,
the set of C functions available to the host program to communicate
with Lua.
All API functions and related types and constants
are declared in the header file lua.h
.
Even when we use the term "function", any facility in the API may be provided as a macro instead. All such macros use each of their arguments exactly once (except for the first argument, which is always a Lua state), and so do not generate any hidden side-effects.
As in most C libraries,
the Lua API functions do not check their arguments for validity or consistency.
However, you can change this behavior by compiling Lua
with a proper definition for the macro luai_apicheck
,
in file luaconf.h
.
Lua uses a virtual stack to pass values to and from C. Each element in this stack represents a Lua value (nil, number, string, etc.).
Whenever Lua calls C, the called function gets a new stack,
which is independent of previous stacks and of stacks of
C functions that are still active.
This stack initially contains any arguments to the C function
and it is where the C function pushes its results
to be returned to the caller (see lua_CFunction
).
For convenience,
most query operations in the API do not follow a strict stack discipline.
Instead, they can refer to any element in the stack
by using an index:
A positive index represents an absolute stack position
(starting at 1);
a negative index represents an offset relative to the top of the stack.
More specifically, if the stack has n elements,
then index 1 represents the first element
(that is, the element that was pushed onto the stack first)
and
index n represents the last element;
index -1 also represents the last element
(that is, the element at the top)
and index -n represents the first element.
We say that an index is valid
if it lies between 1 and the stack top
(that is, if 1 ≤ abs(index) ≤ top
).
When you interact with Lua API,
you are responsible for ensuring consistency.
In particular,
you are responsible for controlling stack overflow.
You can use the function lua_checkstack
to grow the stack size.
Whenever Lua calls C,
it ensures that at least LUA_MINSTACK
stack positions are available.
LUA_MINSTACK
is defined as 20,
so that usually you do not have to worry about stack space
unless your code has loops pushing elements onto the stack.
Most query functions accept as indices any value inside the
available stack space, that is, indices up to the maximum stack size
you have set through lua_checkstack
.
Such indices are called acceptable indices.
More formally, we define an acceptable index
as follows:
(index < 0 && abs(index) <= top) || (index > 0 && index <= stackspace)
Note that 0 is never an acceptable index.
Unless otherwise noted, any function that accepts valid indices can also be called with pseudo-indices, which represent some Lua values that are accessible to C code but which are not in the stack. Pseudo-indices are used to access the thread environment, the function environment, the registry, and the upvalues of a C function (see §3.4).
The thread environment (where global variables live) is
always at pseudo-index LUA_GLOBALSINDEX
.
The environment of the running C function is always
at pseudo-index LUA_ENVIRONINDEX
.
To access and change the value of global variables, you can use regular table operations over an environment table. For instance, to access the value of a global variable, do
lua_getfield(L, LUA_GLOBALSINDEX, varname);
When a C function is created,
it is possible to associate some values with it,
thus creating a C closure;
these values are called upvalues and are
accessible to the function whenever it is called
(see lua_pushcclosure
).
Whenever a C function is called,
its upvalues are located at specific pseudo-indices.
These pseudo-indices are produced by the macro
lua_upvalueindex
.
The first value associated with a function is at position
lua_upvalueindex(1)
, and so on.
Any access to lua_upvalueindex(n)
,
where n is greater than the number of upvalues of the
current function,
produces an acceptable (but invalid) index.
Lua provides a registry,
a pre-defined table that can be used by any C code to
store whatever Lua value it needs to store.
This table is always located at pseudo-index
LUA_REGISTRYINDEX
.
Any C library can store data into this table,
but it should take care to choose keys different from those used
by other libraries, to avoid collisions.
Typically, you should use as key a string containing your library name
or a light userdata with the address of a C object in your code.
The integer keys in the registry are used by the reference mechanism, implemented by the auxiliary library, and therefore should not be used for other purposes.
Internally, Lua uses the C longjmp
facility to handle errors.
(You can also choose to use exceptions if you use C++;
see file luaconf.h
.)
When Lua faces any error
(such as memory allocation errors, type errors, syntax errors,
and runtime errors)
it raises an error;
that is, it does a long jump.
A protected environment uses setjmp
to set a recover point;
any error jumps to the most recent active recover point.
Almost any function in the API may raise an error,
for instance due to a memory allocation error.
The following functions run in protected mode
(that is, they create a protected environment to run),
so they never raise an error:
lua_newstate
, lua_close
, lua_load
,
lua_pcall
, and lua_cpcall
.
Inside a C function you can raise an error by calling lua_error
.
Here we list all functions and types from the C API in alphabetical order.
lua_Alloc
typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize);
The type of the memory-allocation function used by Lua states.
The allocator function must provide a
functionality similar to realloc
,
but not exactly the same.
Its arguments are
ud
, an opaque pointer passed to lua_newstate
;
ptr
, a pointer to the block being allocated/reallocated/freed;
osize
, the original size of the block;
nsize
, the new size of the block.
ptr
is NULL
if and only if osize
is zero.
When nsize
is zero, the allocator must return NULL
;
if osize
is not zero,
it should free the block pointed to by ptr
.
When nsize
is not zero, the allocator returns NULL
if and only if it cannot fill the request.
When nsize
is not zero and osize
is zero,
the allocator should behave like malloc
.
When nsize
and osize
are not zero,
the allocator behaves like realloc
.
Lua assumes that the allocator never fails when
osize >= nsize
.
Here is a simple implementation for the allocator function.
It is used in the auxiliary library by luaL_newstate
.
static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) { (void)ud; (void)osize; /* not used */ if (nsize == 0) { free(ptr); return NULL; } else return realloc(ptr, nsize); }
This code assumes
that free(NULL)
has no effect and that
realloc(NULL, size)
is equivalent to malloc(size)
.
ANSI C ensures both behaviors.
lua_atpanic
lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf);
Sets a new panic function and returns the old one.
If an error happens outside any protected environment,
Lua calls a panic function
and then calls exit(EXIT_FAILURE)
,
thus exiting the host application.
Your panic function may avoid this exit by
never returning (e.g., doing a long jump).
The panic function can access the error message at the top of the stack.
lua_call
void lua_call (lua_State *L, int nargs, int nresults);
Calls a function.
To call a function you must use the following protocol:
first, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed
in direct order;
that is, the first argument is pushed first.
Finally you call lua_call
;
nargs
is the number of arguments that you pushed onto the stack.
All arguments and the function value are popped from the stack
when the function is called.
The function results are pushed onto the stack when the function returns.
The number of results is adjusted to nresults
,
unless nresults
is LUA_MULTRET
.
In this case, all results from the function are pushed.
Lua takes care that the returned values fit into the stack space.
The function results are pushed onto the stack in direct order
(the first result is pushed first),
so that after the call the last result is on the top of the stack.
Any error inside the called function is propagated upwards
(with a longjmp
).
The following example shows how the host program may do the equivalent to this Lua code:
a = f("how", t.x, 14)
Here it is in C:
lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* function to be called */ lua_pushstring(L, "how"); /* 1st argument */ lua_getfield(L, LUA_GLOBALSINDEX, "t"); /* table to be indexed */ lua_getfield(L, -1, "x"); /* push result of t.x (2nd arg) */ lua_remove(L, -2); /* remove 't' from the stack */ lua_pushinteger(L, 14); /* 3rd argument */ lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */ lua_setfield(L, LUA_GLOBALSINDEX, "a"); /* set global 'a' */
Note that the code above is "balanced": at its end, the stack is back to its original configuration. This is considered good programming practice.
lua_CFunction
typedef int (*lua_CFunction) (lua_State *L);
Type for C functions.
In order to communicate properly with Lua,
a C function must use the following protocol,
which defines the way parameters and results are passed:
a C function receives its arguments from Lua in its stack
in direct order (the first argument is pushed first).
So, when the function starts,
lua_gettop(L)
returns the number of arguments received by the function.
The first argument (if any) is at index 1
and its last argument is at index lua_gettop(L)
.
To return values to Lua, a C function just pushes them onto the stack,
in direct order (the first result is pushed first),
and returns the number of results.
Any other value in the stack below the results will be properly
discarded by Lua.
Like a Lua function, a C function called by Lua can also return
many results.
As an example, the following function receives a variable number of numerical arguments and returns their average and sum:
static int foo (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ lua_Number sum = 0; int i; for (i = 1; i <= n; i++) { if (!lua_isnumber(L, i)) { lua_pushstring(L, "incorrect argument"); lua_error(L); } sum += lua_tonumber(L, i); } lua_pushnumber(L, sum/n); /* first result */ lua_pushnumber(L, sum); /* second result */ return 2; /* number of results */ }
lua_checkstack
int lua_checkstack (lua_State *L, int extra);
Ensures that there are at least extra
free stack slots in the stack.
It returns false if it cannot grow the stack to that size.
This function never shrinks the stack;
if the stack is already larger than the new size,
it is left unchanged.
lua_close
void lua_close (lua_State *L);
Destroys all objects in the given Lua state (calling the corresponding garbage-collection metamethods, if any) and frees all dynamic memory used by this state. On several platforms, you may not need to call this function, because all resources are naturally released when the host program ends. On the other hand, long-running programs, such as a daemon or a web server, might need to release states as soon as they are not needed, to avoid growing too large.
lua_concat
void lua_concat (lua_State *L, int n);
Concatenates the n
values at the top of the stack,
pops them, and leaves the result at the top.
If n
is 1, the result is the single string on the stack
(that is, the function does nothing);
if n
is 0, the result is the empty string.
Concatenation is done following the usual semantics of Lua
(see §2.5.4).
lua_cpcall
int lua_cpcall (lua_State *L, lua_CFunction func, void *ud);
Calls the C function func
in protected mode.
func
starts with only one element in its stack,
a light userdata containing ud
.
In case of errors,
lua_cpcall
returns the same error codes as lua_pcall
,
plus the error object on the top of the stack;
otherwise, it returns zero, and does not change the stack.
All values returned by func
are discarded.
lua_createtable
void lua_createtable (lua_State *L, int narr, int nrec);
Creates a new empty table and pushes it onto the stack.
The new table has space pre-allocated
for narr
array elements and nrec
non-array elements.
This pre-allocation is useful when you know exactly how many elements
the table will have.
Otherwise you can use the function lua_newtable
.
lua_dump
int lua_dump (lua_State *L, lua_Writer writer, void *data);
Dumps a function as a binary chunk.
Receives a Lua function on the top of the stack
and produces a binary chunk that,
if loaded again,
results in a function equivalent to the one dumped.
As it produces parts of the chunk,
lua_dump
calls function writer
(see lua_Writer
)
with the given data
to write them.
The value returned is the error code returned by the last call to the writer; 0 means no errors.
This function does not pop the Lua function from the stack.
lua_equal
int lua_equal (lua_State *L, int index1, int index2);
Returns 1 if the two values in acceptable indices index1
and
index2
are equal,
following the semantics of the Lua ==
operator
(that is, may call metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices is non valid.
lua_error
int lua_error (lua_State *L);
Generates a Lua error.
The error message (which can actually be a Lua value of any type)
must be on the stack top.
This function does a long jump,
and therefore never returns.
(see luaL_error
).
lua_gc
int lua_gc (lua_State *L, int what, int data);
Controls the garbage collector.
This function performs several tasks,
according to the value of the parameter what
:
LUA_GCSTOP
:
stops the garbage collector.
LUA_GCRESTART
:
restarts the garbage collector.
LUA_GCCOLLECT
:
performs a full garbage-collection cycle.
LUA_GCCOUNT
:
returns the current amount of memory (in Kbytes) in use by Lua.
LUA_GCCOUNTB
:
returns the remainder of dividing the current amount of bytes of
memory in use by Lua by 1024.
LUA_GCSTEP
:
performs an incremental step of garbage collection.
The step "size" is controlled by data
(larger values mean more steps) in a non-specified way.
If you want to control the step size
you must experimentally tune the value of data
.
The function returns 1 if the step finished a
garbage-collection cycle.
LUA_GCSETPAUSE
:
sets data
/100 as the new value
for the pause of the collector (see §2.10).
The function returns the previous value of the pause.
LUA_GCSETSTEPMUL
:
sets data
/100 as the new value for the step multiplier of
the collector (see §2.10).
The function returns the previous value of the step multiplier.
lua_getallocf
lua_Alloc lua_getallocf (lua_State *L, void **ud);
Returns the memory-allocation function of a given state.
If ud
is not NULL
, Lua stores in *ud
the
opaque pointer passed to lua_newstate
.
lua_getfenv
void lua_getfenv (lua_State *L, int index);
Pushes onto the stack the environment table of the value at the given index.
lua_getfield
void lua_getfield (lua_State *L, int index, const char *k);
Pushes onto the stack the value t[k]
,
where t
is the value at the given valid index index
.
As in Lua, this function may trigger a metamethod
for the "index" event (see §2.8).
lua_getglobal
void lua_getglobal (lua_State *L, const char *name);
Pushes onto the stack the value of the global name
.
It is defined as a macro:
#define lua_getglobal(L,s) lua_getfield(L, LUA_GLOBALSINDEX, s)
lua_getmetatable
int lua_getmetatable (lua_State *L, int index);
Pushes onto the stack the metatable of the value at the given acceptable index. If the index is not valid, or if the value does not have a metatable, the function returns 0 and pushes nothing on the stack.
lua_gettable
void lua_gettable (lua_State *L, int index);
Pushes onto the stack the value t[k]
,
where t
is the value at the given valid index index
and k
is the value at the top of the stack.
This function pops the key from the stack (putting the resulting value in its place). As in Lua, this function may trigger a metamethod for the "index" event (see §2.8).
lua_gettop
int lua_gettop (lua_State *L);
Returns the index of the top element in the stack. Because indices start at 1, this result is equal to the number of elements in the stack (and so 0 means an empty stack).
lua_insert
void lua_insert (lua_State *L, int index);
Moves the top element into the given valid index, shifting up the elements above this index to open space. Cannot be called with a pseudo-index, because a pseudo-index is not an actual stack position.
lua_Integer
typedef ptrdiff_t lua_Integer;
The type used by the Lua API to represent integral values.
By default it is a ptrdiff_t
,
which is usually the largest signed integral type the machine handles
"comfortably".
lua_isboolean
int lua_isboolean (lua_State *L, int index);
Returns 1 if the value at the given acceptable index has type boolean, and 0 otherwise.
lua_iscfunction
int lua_iscfunction (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a C function, and 0 otherwise.
lua_isfunction
int lua_isfunction (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a function (either C or Lua), and 0 otherwise.
lua_islightuserdata
int lua_islightuserdata (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a light userdata, and 0 otherwise.
lua_isnil
int lua_isnil (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is nil, and 0 otherwise.
lua_isnone
int lua_isnone (lua_State *L, int index);
Returns 1 if the the given acceptable index is not valid (that is, it refers to an element outside the current stack), and 0 otherwise.
lua_isnoneornil
int lua_isnoneornil (lua_State *L, int index);
Returns 1 if the the given acceptable index is not valid (that is, it refers to an element outside the current stack) or if the value at this index is nil, and 0 otherwise.
lua_isnumber
int lua_isnumber (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a number or a string convertible to a number, and 0 otherwise.
lua_isstring
int lua_isstring (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a string or a number (which is always convertible to a string), and 0 otherwise.
lua_istable
int lua_istable (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a table, and 0 otherwise.
lua_isthread
int lua_isthread (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a thread, and 0 otherwise.
lua_isuserdata
int lua_isuserdata (lua_State *L, int index);
Returns 1 if the value at the given acceptable index is a userdata (either full or light), and 0 otherwise.
lua_lessthan
int lua_lessthan (lua_State *L, int index1, int index2);
Returns 1 if the value at acceptable index index1
is smaller
than the value at acceptable index index2
,
following the semantics of the Lua <
operator
(that is, may call metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices is non valid.
lua_load
int lua_load (lua_State *L, lua_Reader reader, void *data, const char *chunkname);
Loads a Lua chunk.
If there are no errors,
lua_load
pushes the compiled chunk as a Lua
function on top of the stack.
Otherwise, it pushes an error message.
The return values of lua_load
are:
LUA_ERRSYNTAX
:
syntax error during pre-compilation;LUA_ERRMEM
:
memory allocation error.This function only loads a chunk; it does not run it.
lua_load
automatically detects whether the chunk is text or binary,
and loads it accordingly (see program luac
).
The lua_load
function uses a user-supplied reader
function
to read the chunk (see lua_Reader
).
The data
argument is an opaque value passed to the reader function.
The chunkname
argument gives a name to the chunk,
which is used for error messages and in debug information (see §3.8).
lua_newstate
lua_State *lua_newstate (lua_Alloc f, void *ud);
Creates a new, independent state.
Returns NULL
if cannot create the state
(due to lack of memory).
The argument f
is the allocator function;
Lua does all memory allocation for this state through this function.
The second argument, ud
, is an opaque pointer that Lua
simply passes to the allocator in every call.
lua_newtable
void lua_newtable (lua_State *L);
Creates a new empty table and pushes it onto the stack.
It is equivalent to lua_createtable(L, 0, 0)
.
lua_newthread
lua_State *lua_newthread (lua_State *L);
Creates a new thread, pushes it on the stack,
and returns a pointer to a lua_State
that represents this new thread.
The new state returned by this function shares with the original state
all global objects (such as tables),
but has an independent execution stack.
There is no explicit function to close or to destroy a thread. Threads are subject to garbage collection, like any Lua object.
lua_newuserdata
void *lua_newuserdata (lua_State *L, size_t size);
This function allocates a new block of memory with the given size, pushes onto the stack a new full userdata with the block address, and returns this address.
Userdata represent C values in Lua. A full userdata represents a block of memory. It is an object (like a table): you must create it, it can have its own metatable, and you can detect when it is being collected. A full userdata is only equal to itself (under raw equality).
When Lua collects a full userdata with a gc
metamethod,
Lua calls the metamethod and marks the userdata as finalized.
When this userdata is collected again then
Lua frees its corresponding memory.
lua_next
int lua_next (lua_State *L, int index);
Pops a key from the stack,
and pushes a key-value pair from the table at the given index
(the "next" pair after the given key).
If there are no more elements in the table,
then lua_next
returns 0 (and pushes nothing).
A typical traversal looks like this:
/* table is in the stack at index 't' */ lua_pushnil(L); /* first key */ while (lua_next(L, t) != 0) { /* uses 'key' (at index -2) and 'value' (at index -1) */ printf("%s - %s\n", lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1))); /* removes 'value'; keeps 'key' for next iteration */ lua_pop(L, 1); }
While traversing a table,
do not call lua_tolstring
directly on a key,
unless you know that the key is actually a string.
Recall that lua_tolstring
changes
the value at the given index;
this confuses the next call to lua_next
.
lua_Number
typedef double lua_Number;
The type of numbers in Lua.
By default, it is double, but that can be changed in luaconf.h
.
Through the configuration file you can change Lua to operate with another type for numbers (e.g., float or long).
lua_objlen
size_t lua_objlen (lua_State *L, int index);
Returns the "length" of the value at the given acceptable index:
for strings, this is the string length;
for tables, this is the result of the length operator ('#
');
for userdata, this is the size of the block of memory allocated
for the userdata;
for other values, it is 0.
lua_pcall
int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc);
Calls a function in protected mode.
Both nargs
and nresults
have the same meaning as
in lua_call
.
If there are no errors during the call,
lua_pcall
behaves exactly like lua_call
.
However, if there is any error,
lua_pcall
catches it,
pushes a single value on the stack (the error message),
and returns an error code.
Like lua_call
,
lua_pcall
always removes the function
and its arguments from the stack.
If errfunc
is 0,
then the error message returned on the stack
is exactly the original error message.
Otherwise, errfunc
is the stack index of an
error handler function.
(In the current implementation, this index cannot be a pseudo-index.)
In case of runtime errors,
this function will be called with the error message
and its return value will be the message returned on the stack by lua_pcall
.
Typically, the error handler function is used to add more debug
information to the error message, such as a stack traceback.
Such information cannot be gathered after the return of lua_pcall
,
since by then the stack has unwound.
The lua_pcall
function returns 0 in case of success
or one of the following error codes
(defined in lua.h
):
LUA_ERRRUN
:
a runtime error.
LUA_ERRMEM
:
memory allocation error.
For such errors, Lua does not call the error handler function.
LUA_ERRERR
:
error while running the error handler function.
lua_pop
void lua_pop (lua_State *L, int n);
Pops n
elements from the stack.
lua_pushboolean
void lua_pushboolean (lua_State *L, int b);
Pushes a boolean value with value b
onto the stack.
lua_pushcclosure
void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n);
Pushes a new C closure onto the stack.
When a C function is created,
it is possible to associate some values with it,
thus creating a C closure (see §3.4);
these values are then accessible to the function whenever it is called.
To associate values with a C function,
first these values should be pushed onto the stack
(when there are multiple values, the first value is pushed first).
Then lua_pushcclosure
is called to create and push the C function onto the stack,
with the argument n
telling how many values should be
associated with the function.
lua_pushcclosure
also pops these values from the stack.
lua_pushcfunction
void lua_pushcfunction (lua_State *L, lua_CFunction f);
Pushes a C function onto the stack.
This function receives a pointer to a C function
and pushes onto the stack a Lua value of type function
that,
when called, invokes the corresponding C function.
Any function to be registered in Lua must
follow the correct protocol to receive its parameters
and return its results (see lua_CFunction
).
lua_pushcfunction
is defined as a macro:
#define lua_pushcfunction(L,f) lua_pushcclosure(L,f,0)
lua_pushfstring
const char *lua_pushfstring (lua_State *L, const char *fmt, ...);
Pushes onto the stack a formatted string
and returns a pointer to this string.
It is similar to the C function sprintf
,
but has some important differences:
%%
' (inserts a '%
' in the string),
'%s
' (inserts a zero-terminated string, with no size restrictions),
'%f
' (inserts a lua_Number
),
'%p
' (inserts a pointer as a hexadecimal numeral),
'%d
' (inserts an int
), and
'%c
' (inserts an int
as a character).
lua_pushinteger
void lua_pushinteger (lua_State *L, lua_Integer n);
Pushes a number with value n
onto the stack.
lua_pushlightuserdata
void lua_pushlightuserdata (lua_State *L, void *p);
Pushes a light userdata onto the stack.
Userdata represent C values in Lua. A light userdata represents a pointer. It is a value (like a number): you do not create it, it has no individual metatable, and it is not collected (as it was never created). A light userdata is equal to "any" light userdata with the same C address.
lua_pushlstring
void lua_pushlstring (lua_State *L, const char *s, size_t len);
Pushes the string pointed to by s
with size len
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at s
can be freed or reused immediately after
the function returns.
The string can contain embedded zeros.
lua_pushnil
void lua_pushnil (lua_State *L);
Pushes a nil value onto the stack.
lua_pushnumber
void lua_pushnumber (lua_State *L, lua_Number n);
Pushes a number with value n
onto the stack.
lua_pushstring
void lua_pushstring (lua_State *L, const char *s);
Pushes the zero-terminated string pointed to by s
onto the stack.
Lua makes (or reuses) an internal copy of the given string,
so the memory at s
can be freed or reused immediately after
the function returns.
The string cannot contain embedded zeros;
it is assumed to end at the first zero.
lua_pushthread
int lua_pushthread (lua_State *L);
Pushes the thread represented by L
onto the stack.
Returns 1 if this thread is the main thread of its state.
lua_pushvalue
void lua_pushvalue (lua_State *L, int index);
Pushes a copy of the element at the given valid index onto the stack.
lua_pushvfstring
const char *lua_pushvfstring (lua_State *L, const char *fmt, va_list argp);
Equivalent to lua_pushfstring
, except that it receives a va_list
instead of a variable number of arguments.
lua_rawequal
int lua_rawequal (lua_State *L, int index1, int index2);
Returns 1 if the two values in acceptable indices index1
and
index2
are primitively equal
(that is, without calling metamethods).
Otherwise returns 0.
Also returns 0 if any of the indices are non valid.
lua_rawget
void lua_rawget (lua_State *L, int index);
Similar to lua_gettable
, but does a raw access
(i.e., without metamethods).
lua_rawgeti
void lua_rawgeti (lua_State *L, int index, int n);
Pushes onto the stack the value t[n]
,
where t
is the value at the given valid index index
.
The access is raw;
that is, it does not invoke metamethods.
lua_rawset
void lua_rawset (lua_State *L, int index);
Similar to lua_settable
, but does a raw assignment
(i.e., without metamethods).
lua_rawseti
void lua_rawseti (lua_State *L, int index, int n);
Does the equivalent of t[n] = v
,
where t
is the value at the given valid index index
and v
is the value at the top of the stack,
This function pops the value from the stack. The assignment is raw; that is, it does not invoke metamethods.
lua_Reader
typedef const char * (*lua_Reader) (lua_State *L, void *data, size_t *size);
The reader function used by lua_load
.
Every time it needs another piece of the chunk,
lua_load
calls the reader,
passing along its data
parameter.
The reader must return a pointer to a block of memory
with a new piece of the chunk
and set size
to the block size.
The block must exist until the reader function is called again.
To signal the end of the chunk, the reader must return NULL
.
The reader function may return pieces of any size greater than zero.
lua_register
void lua_register (lua_State *L, const char *name, lua_CFunction f);
Sets the C function f
as the new value of global name
.
It is defined as a macro:
#define lua_register(L,n,f) \ (lua_pushcfunction(L, f), lua_setglobal(L, n))
lua_remove
void lua_remove (lua_State *L, int index);
Removes the element at the given valid index, shifting down the elements above this index to fill the gap. Cannot be called with a pseudo-index, because a pseudo-index is not an actual stack position.
lua_replace
void lua_replace (lua_State *L, int index);
Moves the top element into the given position (and pops it), without shifting any element (therefore replacing the value at the given position).
lua_resume
int lua_resume (lua_State *L, int narg);
Starts and resumes a coroutine in a given thread.
To start a coroutine, you first create a new thread
(see lua_newthread
);
then you push onto its stack the main function plus any arguments;
then you call lua_resume
,
with narg
being the number of arguments.
This call returns when the coroutine suspends or finishes its execution.
When it returns, the stack contains all values passed to lua_yield
,
or all values returned by the body function.
lua_resume
returns
LUA_YIELD
if the coroutine yields,
0 if the coroutine finishes its execution
without errors,
or an error code in case of errors (see lua_pcall
).
In case of errors,
the stack is not unwound,
so you can use the debug API over it.
The error message is on the top of the stack.
To restart a coroutine, you put on its stack only the values to
be passed as results from yield
,
and then call lua_resume
.
lua_setallocf
void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);
Changes the allocator function of a given state to f
with user data ud
.
lua_setfenv
int lua_setfenv (lua_State *L, int index);
Pops a table from the stack and sets it as
the new environment for the value at the given index.
If the value at the given index is
neither a function nor a thread nor a userdata,
lua_setfenv
returns 0.
Otherwise it returns 1.
lua_setfield
void lua_setfield (lua_State *L, int index, const char *k);
Does the equivalent to t[k] = v
,
where t
is the value at the given valid index index
and v
is the value at the top of the stack,
This function pops the value from the stack. As in Lua, this function may trigger a metamethod for the "newindex" event (see §2.8).
lua_setglobal
void lua_setglobal (lua_State *L, const char *name);
Pops a value from the stack and
sets it as the new value of global name
.
It is defined as a macro:
#define lua_setglobal(L,s) lua_setfield(L, LUA_GLOBALSINDEX, s)
lua_setmetatable
int lua_setmetatable (lua_State *L, int index);
Pops a table from the stack and sets it as the new metatable for the value at the given acceptable index.
lua_settable
void lua_settable (lua_State *L, int index);
Does the equivalent to t[k] = v
,
where t
is the value at the given valid index index
,
v
is the value at the top of the stack,
and k
is the value just below the top.
This function pops both the key and the value from the stack. As in Lua, this function may trigger a metamethod for the "newindex" event (see §2.8).
lua_settop
void lua_settop (lua_State *L, int index);
Accepts any acceptable index, or 0,
and sets the stack top to this index.
If the new top is larger than the old one,
then the new elements are filled with nil.
If index
is 0, then all stack elements are removed.
lua_State
typedef struct lua_State lua_State;
Opaque structure that keeps the whole state of a Lua interpreter. The Lua library is fully reentrant: it has no global variables. All information about a state is kept in this structure.
A pointer to this state must be passed as the first argument to
every function in the library, except to lua_newstate
,
which creates a Lua state from scratch.
lua_status
int lua_status (lua_State *L);
Returns the status of the thread L
.
The status can be 0 for a normal thread,
an error code if the thread finished its execution with an error,
or LUA_YIELD
if the thread is suspended.
lua_toboolean
int lua_toboolean (lua_State *L, int index);
Converts the Lua value at the given acceptable index to a C boolean
value (0 or 1).
Like all tests in Lua,
lua_toboolean
returns 1 for any Lua value
different from false and nil;
otherwise it returns 0.
It also returns 0 when called with a non-valid index.
(If you want to accept only actual boolean values,
use lua_isboolean
to test the value's type.)
lua_tocfunction
lua_CFunction lua_tocfunction (lua_State *L, int index);
Converts a value at the given acceptable index to a C function.
That value must be a C function;
otherwise, returns NULL
.
lua_tointeger
lua_Integer lua_tointeger (lua_State *L, int idx);
Converts the Lua value at the given acceptable index
to the signed integral type lua_Integer
.
The Lua value must be a number or a string convertible to a number
(see §2.2.1);
otherwise, lua_tointeger
returns 0.
If the number is not an integer, it is truncated in some non-specified way.
lua_tolstring
const char *lua_tolstring (lua_State *L, int index, size_t *len);
Converts the Lua value at the given acceptable index to a C string.
If len
is not NULL
,
it also sets *len
with the string length.
The Lua value must be a string or a number;
otherwise, the function returns NULL
.
If the value is a number,
then lua_tolstring
also
changes the actual value in the stack to a string.
(This change confuses lua_next
when lua_tolstring
is applied to keys during a table traversal.)
lua_tolstring
returns a fully aligned pointer
to a string inside the Lua state.
This string always has a zero ('\0
')
after its last character (as in C),
but may contain other zeros in its body.
Because Lua has garbage collection,
there is no guarantee that the pointer returned by lua_tolstring
will be valid after the corresponding value is removed from the stack.
lua_tonumber
lua_Number lua_tonumber (lua_State *L, int index);
Converts the Lua value at the given acceptable index
to the C type lua_Number
(see lua_Number
).
The Lua value must be a number or a string convertible to a number
(see §2.2.1);
otherwise, lua_tonumber
returns 0.
lua_topointer
const void *lua_topointer (lua_State *L, int index);
Converts the value at the given acceptable index to a generic
C pointer (void*
).
The value may be a userdata, a table, a thread, or a function;
otherwise, lua_topointer
returns NULL
.
Different objects will give different pointers.
There is no way to convert the pointer back to its original value.
Typically this function is used only for debug information.
lua_tostring
const char *lua_tostring (lua_State *L, int index);
Equivalent to lua_tolstring
with len
equal to NULL
.
lua_tothread
lua_State *lua_tothread (lua_State *L, int index);
Converts the value at the given acceptable index to a Lua thread
(represented as lua_State*
).
This value must be a thread;
otherwise, the function returns NULL
.
lua_touserdata
void *lua_touserdata (lua_State *L, int index);
If the value at the given acceptable index is a full userdata,
returns its block address.
If the value is a light userdata,
returns its pointer.
Otherwise, returns NULL
.
lua_type
int lua_type (lua_State *L, int index);
Returns the type of the value in the given acceptable index,
or LUA_TNONE
for a non-valid index
(that is, an index to an "empty" stack position).
The types returned by lua_type
are coded by the following constants
defined in lua.h
:
LUA_TNIL
,
LUA_TNUMBER
,
LUA_TBOOLEAN
,
LUA_TSTRING
,
LUA_TTABLE
,
LUA_TFUNCTION
,
LUA_TUSERDATA
,
LUA_TTHREAD
,
and
LUA_TLIGHTUSERDATA
.
lua_typename
const char *lua_typename (lua_State *L, int tp);
Returns the name of the type encoded by the value tp
,
which must be one the values returned by lua_type
.
lua_Writer
typedef int (*lua_Writer) (lua_State *L, const void* p, size_t sz, void* ud);
The writer function used by lua_dump
.
Every time it produces another piece of chunk,
lua_dump
calls the writer,
passing along the buffer to be written (p
),
its size (sz
),
and the data
parameter supplied to lua_dump
.
The writer returns an error code:
0 means no errors;
any other value means an error and stops lua_dump
from
calling the writer again.
lua_xmove
void lua_xmove (lua_State *from, lua_State *to, int n);
Exchange values between different threads of the same global state.
This function pops n
values from the stack from
,
and pushes them onto the stack to
.
lua_yield
int lua_yield (lua_State *L, int nresults);
Yields a coroutine.
This function should only be called as the return expression of a C function, as follows:
return lua_yield (L, nresults);
When a C function calls lua_yield
in that way,
the running coroutine suspends its execution,
and the call to lua_resume
that started this coroutine returns.
The parameter nresults
is the number of values from the stack
that are passed as results to lua_resume
.
Lua has no built-in debugging facilities. Instead, it offers a special interface by means of functions and hooks. This interface allows the construction of different kinds of debuggers, profilers, and other tools that need "inside information" from the interpreter.
lua_Debug
typedef struct lua_Debug { int event; const char *name; /* (n) */ const char *namewhat; /* (n) */ const char *what; /* (S) */ const char *source; /* (S) */ int currentline; /* (l) */ int nups; /* (u) number of upvalues */ int linedefined; /* (S) */ int lastlinedefined; /* (S) */ char short_src[LUA_IDSIZE]; /* (S) */ /* private part */ other fields } lua_Debug;
A structure used to carry different pieces of
information about an active function.
lua_getstack
fills only the private part
of this structure, for later use.
To fill the other fields of lua_Debug
with useful information,
call lua_getinfo
.
The fields of lua_Debug
have the following meaning:
source
:
If the function was defined in a string,
then source
is that string.
If the function was defined in a file,
then source
starts with a '@
' followed by the file name.
short_src
:
a "printable" version of source
, to be used in error messages.
linedefined
:
the line number where the definition of the function starts.
lastlinedefined
:
the line number where the definition of the function ends.
what
:
the string "Lua"
if the function is a Lua function,
"C"
if it is a C function,
"main"
if it is the main part of a chunk,
and "tail"
if it was a function that did a tail call.
In the latter case,
Lua has no other information about the function.
currentline
:
the current line where the given function is executing.
When no line information is available,
currentline
is set to -1.
name
:
a reasonable name for the given function.
Because functions in Lua are first-class values,
they do not have a fixed name:
some functions may be the value of multiple global variables,
while others may be stored only in a table field.
The lua_getinfo
function checks how the function was
called to find a suitable name.
If it cannot find a name,
then name
is set to NULL
.
namewhat
:
explains the name
field.
The value of namewhat
can be
"global"
, "local"
, "method"
,
"field"
, "upvalue"
, or ""
(the empty string),
according to how the function was called.
(Lua uses the empty string when no other option seems to apply.)
nups
:
the number of upvalues of the function.
lua_gethook
lua_Hook lua_gethook (lua_State *L);
Returns the current hook function.
lua_gethookcount
int lua_gethookcount (lua_State *L);
Returns the current hook count.
lua_gethookmask
int lua_gethookmask (lua_State *L);
Returns the current hook mask.
lua_getinfo
int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar);
Returns information about a specific function or function invocation.
To get information about a function invocation,
the parameter ar
must be a valid activation record that was
filled by a previous call to lua_getstack
or
given as argument to a hook (see lua_Hook
).
To get information about a function you push it onto the stack
and start the what
string with the character '>
'.
(In that case,
lua_getinfo
pops the function in the top of the stack.)
For instance, to know in which line a function f
was defined,
you can write the following code:
lua_Debug ar; lua_getfield(L, LUA_GLOBALSINDEX, "f"); /* get global 'f' */ lua_getinfo(L, ">S", &ar); printf("%d\n", ar.linedefined);
Each character in the string what
selects some fields of the structure ar
to be filled or
a value to be pushed on the stack:
n
': fills in the field name
and namewhat
;
S
':
fills in the fields source
, short_src
,
linedefined
, lastlinedefined
, and what
;
l
': fills in the field currentline
;
u
': fills in the field nups
;
f
':
pushes onto the stack the function that is
running at the given level;
L
':
pushes onto the stack a table whose indices are the
numbers of the lines that are valid on the function.
(A valid line is a line with some associated code,
that is, a line where you can put a break point.
Non-valid lines include empty lines and comments.)
This function returns 0 on error
(for instance, an invalid option in what
).
lua_getlocal
const char *lua_getlocal (lua_State *L, lua_Debug *ar, int n);
Gets information about a local variable of a given activation record.
The parameter ar
must be a valid activation record that was
filled by a previous call to lua_getstack
or
given as argument to a hook (see lua_Hook
).
The index n
selects which local variable to inspect
(1 is the first parameter or active local variable, and so on,
until the last active local variable).
lua_getlocal
pushes the variable's value onto the stack
and returns its name.
Variable names starting with '(
' (open parentheses)
represent internal variables
(loop control variables, temporaries, and C function locals).
Returns NULL
(and pushes nothing)
when the index is greater than
the number of active local variables.
lua_getstack
int lua_getstack (lua_State *L, int level, lua_Debug *ar);
Get information about the interpreter runtime stack.
This function fills parts of a lua_Debug
structure with
an identification of the activation record
of the function executing at a given level.
Level 0 is the current running function,
whereas level n+1 is the function that has called level n.
When there are no errors, lua_getstack
returns 1;
when called with a level greater than the stack depth,
it returns 0.
lua_getupvalue
const char *lua_getupvalue (lua_State *L, int funcindex, int n);
Gets information about a closure's upvalue.
(For Lua functions,
upvalues are the external local variables that the function uses,
and that are consequently included in its closure.)
lua_getupvalue
gets the index n
of an upvalue,
pushes the upvalue's value onto the stack,
and returns its name.
funcindex
points to the closure in the stack.
(Upvalues have no particular order,
as they are active through the whole function.
So, they are numbered in an arbitrary order.)
Returns NULL
(and pushes nothing)
when the index is greater than the number of upvalues.
For C functions, this function uses the empty string ""
as a name for all upvalues.
lua_Hook
typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
Type for debugging hook functions.
Whenever a hook is called, its ar
argument has its field
event
set to the specific event that triggered the hook.
Lua identifies these events with the following constants:
LUA_HOOKCALL
, LUA_HOOKRET
,
LUA_HOOKTAILRET
, LUA_HOOKLINE
,
and LUA_HOOKCOUNT
.
Moreover, for line events, the field currentline
is also set.
To get the value of any other field in ar
,
the hook must call lua_getinfo
.
For return events, event
may be LUA_HOOKRET
,
the normal value, or LUA_HOOKTAILRET
.
In the latter case, Lua is simulating a return from
a function that did a tail call;
in this case, it is useless to call lua_getinfo
.
While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls back Lua to execute a function or a chunk, this execution occurs without any calls to hooks.
lua_sethook
int lua_sethook (lua_State *L, lua_Hook f, int mask, int count);
Sets the debugging hook function.
Argument f
is the hook function.
mask
specifies on which events the hook will be called:
it is formed by a bitwise or of the constants
LUA_MASKCALL
,
LUA_MASKRET
,
LUA_MASKLINE
,
and LUA_MASKCOUNT
.
The count
argument is only meaningful when the mask
includes LUA_MASKCOUNT
.
For each event, the hook is called as explained below:
count
instructions.
(This event only happens while Lua is executing a Lua function.)
A hook is disabled by setting mask
to zero.
lua_setlocal
const char *lua_setlocal (lua_State *L, lua_Debug *ar, int n);
Sets the value of a local variable of a given activation record.
Parameters ar
and n
are as in lua_getlocal
(see lua_getlocal
).
lua_setlocal
assigns the value at the top of the stack
to the variable and returns its name.
It also pops the value from the stack.
Returns NULL
(and pops nothing)
when the index is greater than
the number of active local variables.
lua_setupvalue
const char *lua_setupvalue (lua_State *L, int funcindex, int n);
Sets the value of a closure's upvalue.
It assigns the value at the top of the stack
to the upvalue and returns its name.
It also pops the value from the stack.
Parameters funcindex
and n
are as in the lua_getupvalue
(see lua_getupvalue
).
Returns NULL
(and pops nothing)
when the index is greater than the number of upvalues.
The auxiliary library provides several convenient functions to interface C with Lua. While the basic API provides the primitive functions for all interactions between C and Lua, the auxiliary library provides higher-level functions for some common tasks.
All functions from the auxiliary library
are defined in header file lauxlib.h
and
have a prefix luaL_
.
All functions in the auxiliary library are built on top of the basic API, and so they provide nothing that cannot be done with this API.
Several functions in the auxiliary library are used to
check C function arguments.
Their names are always luaL_check*
or luaL_opt*
.
All of these functions raise an error if the check is not satisfied.
Because the error message is formatted for arguments
(e.g., "bad argument #1
"),
you should not use these functions for other stack values.
Here we list all functions and types from the auxiliary library in alphabetical order.
luaL_addchar
void luaL_addchar (luaL_Buffer *B, char c);
Adds the character c
to the buffer B
(see luaL_Buffer
).
luaL_addlstring
void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l);
Adds the string pointed to by s
with length l
to
the buffer B
(see luaL_Buffer
).
The string may contain embedded zeros.
luaL_addsize
void luaL_addsize (luaL_Buffer *B, size_t n);
Adds to the buffer B
(see luaL_Buffer
)
a string of length n
previously copied to the
buffer area (see luaL_prepbuffer
).
luaL_addstring
void luaL_addstring (luaL_Buffer *B, const char *s);
Adds the zero-terminated string pointed to by s
to the buffer B
(see luaL_Buffer
).
The string may not contain embedded zeros.
luaL_addvalue
void luaL_addvalue (luaL_Buffer *B);
Adds the value at the top of the stack
to the buffer B
(see luaL_Buffer
).
Pops the value.
This is the only function on string buffers that can (and must) be called with an extra element on the stack, which is the value to be added to the buffer.
luaL_argcheck
void luaL_argcheck (lua_State *L, int cond, int narg, const char *extramsg);
Checks whether cond
is true.
If not, raises an error with the following message,
where func
is retrieved from the call stack:
bad argument #<narg> to <func> (<extramsg>)
luaL_argerror
int luaL_argerror (lua_State *L, int narg, const char *extramsg);
Raises an error with the following message,
where func
is retrieved from the call stack:
bad argument #<narg> to <func> (<extramsg>)
This function never returns,
but it is an idiom to use it in C functions
as return luaL_argerror(args)
.
luaL_Buffer
typedef struct luaL_Buffer luaL_Buffer;
Type for a string buffer.
A string buffer allows C code to build Lua strings piecemeal. Its pattern of use is as follows:
b
of type luaL_Buffer
.luaL_buffinit(L, &b)
.luaL_add*
functions.
luaL_pushresult(&b)
.
This call leaves the final string on the top of the stack.
During its normal operation,
a string buffer uses a variable number of stack slots.
So, while using a buffer, you cannot assume that you know where
the top of the stack is.
You can use the stack between successive calls to buffer operations
as long as that use is balanced;
that is,
when you call a buffer operation,
the stack is at the same level
it was immediately after the previous buffer operation.
(The only exception to this rule is luaL_addvalue
.)
After calling luaL_pushresult
the stack is back to its
level when the buffer was initialized,
plus the final string on its top.
luaL_buffinit
void luaL_buffinit (lua_State *L, luaL_Buffer *B);
Initializes a buffer B
.
This function does not allocate any space;
the buffer must be declared as a variable
(see luaL_Buffer
).
luaL_callmeta
int luaL_callmeta (lua_State *L, int obj, const char *e);
Calls a metamethod.
If the object at index obj
has a metatable and this
metatable has a field e
,
this function calls this field and passes the object as its only argument.
In this case this function returns 1 and pushes onto the
stack the value returned by the call.
If there is no metatable or no metamethod,
this function returns 0 (without pushing any value on the stack).
luaL_checkany
void luaL_checkany (lua_State *L, int narg);
Checks whether the function has an argument
of any type (including nil) at position narg
.
luaL_checkint
int luaL_checkint (lua_State *L, int narg);
Checks whether the function argument narg
is a number
and returns this number cast to an int
.
luaL_checkinteger
lua_Integer luaL_checkinteger (lua_State *L, int narg);
Checks whether the function argument narg
is a number
and returns this number cast to a lua_Integer
.
luaL_checklong
long luaL_checklong (lua_State *L, int narg);
Checks whether the function argument narg
is a number
and returns this number cast to a long
.
luaL_checklstring
const char *luaL_checklstring (lua_State *L, int narg, size_t *l);
Checks whether the function argument narg
is a string
and returns this string;
if l
is not NULL
fills *l
with the string's length.
luaL_checknumber
lua_Number luaL_checknumber (lua_State *L, int narg);
Checks whether the function argument narg
is a number
and returns this number.
luaL_checkoption
int luaL_checkoption (lua_State *L, int narg, const char *def, const char *const lst[]);
Checks whether the function argument narg
is a string and
searches for this string in the array lst
(which must be NULL-terminated).
Returns the index in the array where the string was found.
Raises an error if the argument is not a string or
if the string cannot be found.
If def
is not NULL
,
the function uses def
as a default value when
there is no argument narg
or if this argument is nil.
This is a useful function for mapping strings to C enums. (The usual convention in Lua libraries is to use strings instead of numbers to select options.)
luaL_checkstack
void luaL_checkstack (lua_State *L, int sz, const char *msg);
Grows the stack size to top + sz
elements,
raising an error if the stack cannot grow to that size.
msg
is an additional text to go into the error message.
luaL_checkstring
const char *luaL_checkstring (lua_State *L, int narg);
Checks whether the function argument narg
is a string
and returns this string.
luaL_checktype
void luaL_checktype (lua_State *L, int narg, int t);
Checks whether the function argument narg
has type t
.
luaL_checkudata
void *luaL_checkudata (lua_State *L, int narg, const char *tname);
Checks whether the function argument narg
is a userdata
of the type tname
(see luaL_newmetatable
).
luaL_dofile
int luaL_dofile (lua_State *L, const char *filename);
Loads and runs the given file. It is defined as the following macro:
(luaL_loadfile(L, filename) || lua_pcall(L, 0, LUA_MULTRET, 0))
It returns 0 if there are no errors or 1 in case of errors.
luaL_dostring
int luaL_dostring (lua_State *L, const char *str);
Loads and runs the given string. It is defined as the following macro:
(luaL_loadstring(L, str) || lua_pcall(L, 0, LUA_MULTRET, 0))
It returns 0 if there are no errors or 1 in case of errors.
luaL_error
int luaL_error (lua_State *L, const char *fmt, ...);
Raises an error.
The error message format is given by fmt
plus any extra arguments,
following the same rules of lua_pushfstring
.
It also adds at the beginning of the message the file name and
the line number where the error occurred,
if this information is available.
This function never returns,
but it is an idiom to use it in C functions
as return luaL_error(args)
.
luaL_getmetafield
int luaL_getmetafield (lua_State *L, int obj, const char *e);
Pushes onto the stack the field e
from the metatable
of the object at index obj
.
If the object does not have a metatable,
or if the metatable does not have this field,
returns 0 and pushes nothing.
luaL_getmetatable
void luaL_getmetatable (lua_State *L, const char *tname);
Pushes onto the stack the metatable associated with name tname
in the registry (see luaL_newmetatable
).
luaL_gsub
const char *luaL_gsub (lua_State *L, const char *s, const char *p, const char *r);
Creates a copy of string s
by replacing
any occurrence of the string p
with the string r
.
Pushes the resulting string on the stack and returns it.
luaL_loadbuffer
int luaL_loadbuffer (lua_State *L, const char *buff, size_t sz, const char *name);
Loads a buffer as a Lua chunk.
This function uses lua_load
to load the chunk in the
buffer pointed to by buff
with size sz
.
This function returns the same results as lua_load
.
name
is the chunk name,
used for debug information and error messages.
luaL_loadfile
int luaL_loadfile (lua_State *L, const char *filename);
Loads a file as a Lua chunk.
This function uses lua_load
to load the chunk in the file
named filename
.
If filename
is NULL
,
then it loads from the standard input.
The first line in the file is ignored if it starts with a #
.
This function returns the same results as lua_load
,
but it has an extra error code LUA_ERRFILE
if it cannot open/read the file.
As lua_load
, this function only loads the chunk;
it does not run it.
luaL_loadstring
int luaL_loadstring (lua_State *L, const char *s);
Loads a string as a Lua chunk.
This function uses lua_load
to load the chunk in
the zero-terminated string s
.
This function returns the same results as lua_load
.
Also as lua_load
, this function only loads the chunk;
it does not run it.
luaL_newmetatable
int luaL_newmetatable (lua_State *L, const char *tname);
If the registry already has the key tname
,
returns 0.
Otherwise,
creates a new table to be used as a metatable for userdata,
adds it to the registry with key tname
,
and returns 1.
In both cases pushes onto the stack the final value associated
with tname
in the registry.
luaL_newstate
lua_State *luaL_newstate (void);
Creates a new Lua state.
It calls lua_newstate
with an
allocator based on the standard C realloc
function
and then sets a panic function (see lua_atpanic
) that prints
an error message to the standard error output in case of fatal
errors.
Returns the new state,
or NULL
if there is a memory allocation error.
luaL_openlibs
void luaL_openlibs (lua_State *L);
Opens all standard Lua libraries into the given state.
luaL_optint
int luaL_optint (lua_State *L, int narg, int d);
If the function argument narg
is a number,
returns this number cast to an int
.
If this argument is absent or is nil,
returns d
.
Otherwise, raises an error.
luaL_optinteger
lua_Integer luaL_optinteger (lua_State *L, int narg, lua_Integer d);
If the function argument narg
is a number,
returns this number cast to a lua_Integer
.
If this argument is absent or is nil,
returns d
.
Otherwise, raises an error.
luaL_optlong
long luaL_optlong (lua_State *L, int narg, long d);
If the function argument narg
is a number,
returns this number cast to a long
.
If this argument is absent or is nil,
returns d
.
Otherwise, raises an error.
luaL_optlstring
const char *luaL_optlstring (lua_State *L, int narg, const char *d, size_t *l);
If the function argument narg
is a string,
returns this string.
If this argument is absent or is nil,
returns d
.
Otherwise, raises an error.
If l
is not NULL
,
fills the position *l
with the results's length.
luaL_optnumber
lua_Number luaL_optnumber (lua_State *L, int narg, lua_Number d);
If the function argument narg
is a number,
returns this number.
If this argument is absent or is nil,
returns d
.
Otherwise, raises an error.
luaL_optstring
const char *luaL_optstring (lua_State *L, int narg, const char *d);
If the function argument narg
is a string,
returns this string.
If this argument is absent or is nil,
returns d
.
Otherwise, raises an error.
luaL_prepbuffer
char *luaL_prepbuffer (luaL_Buffer *B);
Returns an address to a space of size LUAL_BUFFERSIZE
where you can copy a string to be added to buffer B
(see luaL_Buffer
).
After copying the string into this space you must call
luaL_addsize
with the size of the string to actually add
it to the buffer.
luaL_pushresult
void luaL_pushresult (luaL_Buffer *B);
Finishes the use of buffer B
leaving the final string on
the top of the stack.
luaL_ref
int luaL_ref (lua_State *L, int t);
Creates and returns a reference,
in the table at index t
,
for the object at the top of the stack (and pops the object).
A reference is a unique integer key.
As long as you do not manually add integer keys into table t
,
luaL_ref
ensures the uniqueness of the key it returns.
You can retrieve an object referred by reference r
by calling lua_rawgeti(L, t, r)
.
Function luaL_unref
frees a reference and its associated object.
If the object at the top of the stack is nil,
luaL_ref
returns the constant LUA_REFNIL
.
The constant LUA_NOREF
is guaranteed to be different
from any reference returned by luaL_ref
.
luaL_Reg
typedef struct luaL_Reg { const char *name; lua_CFunction func; } luaL_Reg;
Type for arrays of functions to be registered by
luaL_register
.
name
is the function name and func
is a pointer to
the function.
Any array of luaL_Reg
must end with an sentinel entry
in which both name
and func
are NULL
.
luaL_register
void luaL_register (lua_State *L, const char *libname, const luaL_Reg *l);
Opens a library.
When called with libname
equal to NULL
,
it simply registers all functions in the list l
(see luaL_Reg
) into the table on the top of the stack.
When called with a non-null libname
,
luaL_register
creates a new table t
,
sets it as the value of the global variable libname
,
sets it as the value of package.loaded[libname]
,
and registers on it all functions in the list l
.
If there is a table in package.loaded[libname]
or in
variable libname
,
reuses this table instead of creating a new one.
In any case the function leaves the table on the top of the stack.
luaL_typename
const char *luaL_typename (lua_State *L, int idx);
Returns the name of the type of the value at index idx
.
luaL_typerror
int luaL_typerror (lua_State *L, int narg, const char *tname);
Generates an error with a message like the following:
location: bad argument narg to 'func' (tname expected, got rt)
where location
is produced by luaL_where
,
func
is the name of the current function,
and rt
is the type name of the actual argument.
luaL_unref
void luaL_unref (lua_State *L, int t, int ref);
Releases reference ref
from the table at index t
(see luaL_ref
).
The entry is removed from the table,
so that the referred object can be collected.
The reference ref
is also freed to be used again.
If ref
is LUA_NOREF
or LUA_REFNIL
,
luaL_unref
does nothing.
luaL_where
void luaL_where (lua_State *L, int lvl);
Pushes onto the stack a string identifying the current position
of the control at level lvl
in the call stack.
Typically this string has the following format:
chunkname:currentline:
Level 0 is the running function, level 1 is the function that called the running function, etc.
This function is used to build a prefix for error messages.
The standard Lua libraries provide useful functions
that are implemented directly through the C API.
Some of these functions provide essential services to the language
(e.g., type
and getmetatable
);
others provide access to "outside" services (e.g., I/O);
and others could be implemented in Lua itself,
but are quite useful or have critical performance requirements that
deserve an implementation in C (e.g., sort
).
All libraries are implemented through the official C API and are provided as separate C modules. Currently, Lua has the following standard libraries:
Except for the basic and package libraries, each library provides all its functions as fields of a global table or as methods of its objects.
To have access to these libraries,
the C host program should call the luaL_openlibs
function,
which opens all standard libraries.
Alternatively,
it can open them individually by calling
luaopen_base
(for the basic library),
luaopen_package
(for the package library),
luaopen_string
(for the string library),
luaopen_table
(for the table library),
luaopen_math
(for the mathematical library),
luaopen_io
(for the I/O and the Operating System libraries),
and luaopen_debug
(for the debug library).
These functions are declared in lualib.h
and should not be called directly:
you must call them like any other Lua C function,
e.g., by using lua_call
.
The basic library provides some core functions to Lua. If you do not include this library in your application, you should check carefully whether you need to provide implementations for some of its facilities.
assert (v [, message])
v
is false (i.e., nil or false);
otherwise, returns all its arguments.
message
is an error message;
when absent, it defaults to "assertion failed!"
collectgarbage (opt [, arg])
This function is a generic interface to the garbage collector.
It performs different functions according to its first argument, opt
:
arg
(larger values mean more steps) in a non-specified way.
If you want to control the step size
you must experimentally tune the value of arg
.
Returns true if the step finished a collection cycle.
arg
/100 as the new value for the pause of
the collector (see §2.10).
arg
/100 as the new value for the step multiplier of
the collector (see §2.10).
dofile (filename)
dofile
executes the contents of the standard input (stdin
).
Returns all values returned by the chunk.
In case of errors, dofile
propagates the error
to its caller (that is, dofile
does not run in protected mode).
error (message [, level])
message
as the error message.
Function error
never returns.
Usually, error
adds some information about the error position
at the beginning of the message.
The level
argument specifies how to get the error position.
With level 1 (the default), the error position is where the
error
function was called.
Level 2 points the error to where the function
that called error
was called; and so on.
Passing a level 0 avoids the addition of error position information
to the message.
_G
_G._G = _G
).
Lua itself does not use this variable;
changing its value does not affect any environment,
nor vice-versa.
(Use setfenv
to change environments.)
getfenv ([f])
f
can be a Lua function or a number
that specifies the function at that stack level:
Level 1 is the function calling getfenv
.
If the given function is not a Lua function,
or if f
is 0,
getfenv
returns the global environment.
The default for f
is 1.
getmetatable (object)
If object
does not have a metatable, returns nil.
Otherwise,
if the object's metatable has a "__metatable"
field,
returns the associated value.
Otherwise, returns the metatable of the given object.
ipairs (t)
Returns three values: an iterator function, the table t
, and 0,
so that the construction
for i,v in ipairs(t) do body end
will iterate over the pairs (1,t[1]
), (2,t[2]
), ···,
up to the first integer key absent from the table.
load (func [, chunkname])
Loads a chunk using function func
to get its pieces.
Each call to func
must return a string that concatenates
with previous results.
A return of nil (or no value) signals the end of the chunk.
If there are no errors, returns the compiled chunk as a function; otherwise, returns nil plus the error message. The environment of the returned function is the global environment.
chunkname
is used as the chunk name for error messages
and debug information.
loadfile ([filename])
Similar to load
,
but gets the chunk from file filename
or from the standard input,
if no file name is given.
loadstring (string [, chunkname])
Similar to load
,
but gets the chunk from the given string.
To load and run a given string, use the idiom
assert(loadstring(s))()
next (table [, index])
Allows a program to traverse all fields of a table.
Its first argument is a table and its second argument
is an index in this table.
next
returns the next index of the table
and its associated value.
When called with nil as its second argument,
next
returns an initial index
and its associated value.
When called with the last index,
or with nil in an empty table,
next
returns nil.
If the second argument is absent, then it is interpreted as nil.
In particular,
you can use next(t)
to check whether a table is empty.
The order in which the indices are enumerated is not specified,
even for numeric indices.
(To traverse a table in numeric order,
use a numerical for or the ipairs
function.)
The behavior of next
is undefined if,
during the traversal,
you assign any value to a non-existent field in the table.
You may however modify existing fields.
In particular, you may clear existing fields.
pairs (t)
Returns three values: the next
function, the table t
, and nil,
so that the construction
for k,v in pairs(t) do body end
will iterate over all key–value pairs of table t
.
See function next
for the caveats of modifying
the table during its traversal.
pcall (f, arg1, ···)
Calls function f
with
the given arguments in protected mode.
This means that any error inside f
is not propagated;
instead, pcall
catches the error
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In such case, pcall
also returns all results from the call,
after this first result.
In case of any error, pcall
returns false plus the error message.
print (···)
stdout
,
using the tostring
function to convert them to strings.
print
is not intended for formatted output,
but only as a quick way to show a value,
typically for debugging.
For formatted output, use string.format
.
rawequal (v1, v2)
v1
is equal to v2
,
without invoking any metamethod.
Returns a boolean.
rawget (table, index)
table[index]
,
without invoking any metamethod.
table
must be a table;
index
may be any value.
rawset (table, index, value)
table[index]
to value
,
without invoking any metamethod.
table
must be a table,
index
any value different from nil,
and value
any Lua value.
This function returns table
.
select (index, ···)
If index
is a number,
returns all arguments after argument number index
.
Otherwise, index
must be the string "#"
,
and select
returns the total number of extra arguments it received.
setfenv (f, table)
Sets the environment to be used by the given function.
f
can be a Lua function or a number
that specifies the function at that stack level:
Level 1 is the function calling setfenv
.
setfenv
returns the given function.
As a special case, when f
is 0 setfenv
changes
the environment of the running thread.
In this case, setfenv
returns no values.
setmetatable (table, metatable)
Sets the metatable for the given table.
(You cannot change the metatable of other types from Lua, only from C.)
If metatable
is nil,
removes the metatable of the given table.
If the original metatable has a "__metatable"
field,
raises an error.
This function returns table
.
tonumber (e [, base])
tonumber
returns this number;
otherwise, it returns nil.
An optional argument specifies the base to interpret the numeral.
The base may be any integer between 2 and 36, inclusive.
In bases above 10, the letter 'A
' (in either upper or lower case)
represents 10, 'B
' represents 11, and so forth,
with 'Z
' representing 35.
In base 10 (the default), the number may have a decimal part,
as well as an optional exponent part (see §2.1).
In other bases, only unsigned integers are accepted.
tostring (e)
string.format
.
If the metatable of e
has a "__tostring"
field,
then tostring
calls the corresponding value
with e
as argument,
and uses the result of the call as its result.
type (v)
nil
" (a string, not the value nil),
"number
",
"string
",
"boolean
",
"table
",
"function
",
"thread
",
and "userdata
".
unpack (list [, i [, j]])
return list[i], list[i+1], ···, list[j]
except that the above code can be written only for a fixed number
of elements.
By default, i
is 1 and j
is the length of the list,
as defined by the length operator (see §2.5.5).
_VERSION
Lua 5.1
".
xpcall (f, err)
This function is similar to pcall
,
except that you can set a new error handler.
xpcall
calls function f
in protected mode,
using err
as the error handler.
Any error inside f
is not propagated;
instead, xpcall
catches the error,
calls the err
function with the original error object,
and returns a status code.
Its first result is the status code (a boolean),
which is true if the call succeeds without errors.
In this case, xpcall
also returns all results from the call,
after this first result.
In case of any error,
xpcall
returns false plus the result from err
.
The operations related to coroutines comprise a sub-library of
the basic library and come inside the table coroutine
.
See §2.11 for a general description of coroutines.
coroutine.create (f)
Creates a new coroutine, with body f
.
f
must be a Lua function.
Returns this new coroutine,
an object with type "thread"
.
coroutine.resume (co [, val1, ···])
Starts or continues the execution of coroutine co
.
The first time you resume a coroutine,
it starts running its body.
The values val1
, ··· are passed
as the arguments to the body function.
If the coroutine has yielded,
resume
restarts it;
the values val1
, ··· are passed
as the results from the yield.
If the coroutine runs without any errors,
resume
returns true plus any values passed to yield
(if the coroutine yields) or any values returned by the body function
(if the coroutine terminates).
If there is any error,
resume
returns false plus the error message.
coroutine.running ()
Returns the running coroutine, or nil when called by the main thread.
coroutine.status (co)
Returns the status of coroutine co
, as a string:
"running"
,
if the coroutine is running (that is, it called status
);
"suspended"
, if the coroutine is suspended in a call to yield
,
or if it has not started running yet;
"normal"
if the coroutine is active but not running
(that is, it has resumed another coroutine);
and "dead"
if the coroutine has finished its body function,
or if it has stopped with an error.
coroutine.wrap (f)
Creates a new coroutine, with body f
.
f
must be a Lua function.
Returns a function that resumes the coroutine each time it is called.
Any arguments passed to the function behave as the
extra arguments to resume
.
Returns the same values returned by resume
,
except the first boolean.
In case of error, propagates the error.
coroutine.yield (···)
Suspends the execution of the calling coroutine.
The coroutine cannot be running a C function,
a metamethod, or an iterator.
Any arguments to yield
are passed as extra results to resume
.
The package library provides basic
facilities for loading and building modules in Lua.
It exports two of its functions directly in the global environment:
require
and module
.
Everything else is exported in a table package
.
module (name [, ···])
Creates a module.
If there is a table in package.loaded[name]
,
this table is the module.
Otherwise, if there is a global table t
with the given name,
this table is the module.
Otherwise creates a new table t
and
sets it as the value of the global name
and
the value of package.loaded[name]
.
This function also initializes t._NAME
with the given name,
t._M
with the module (t
itself),
and t._PACKAGE
with the package name
(the full module name minus last component; see below).
Finally, module
sets t
as the new environment
of the current function and the new value of package.loaded[name]
,
so that require
returns t
.
If name
is a compound name
(that is, one with components separated by dots),
module
creates (or reuses, if they already exist)
tables for each component.
For instance, if name
is a.b.c
,
then module
stores the module table in field c
of
field b
of global a
.
This function may receive optional options after the module name, where each option is a function to be applied over the module.
require (modname)
Loads the given module.
The function starts by looking into the package.loaded
table
to determine whether modname
is already loaded.
If it is, then require
returns the value stored
at package.loaded[modname]
.
Otherwise, it tries to find a loader for the module.
To find a loader,
first require
queries package.preload[modname]
.
If it has a value,
this value (which should be a function) is the loader.
Otherwise require
searches for a Lua loader using the
path stored in package.path
.
If that also fails, it searches for a C loader using the
path stored in package.cpath
.
If that also fails,
it tries an all-in-one loader (see below).
When loading a C library,
require
first uses a dynamic link facility to link the
application with the library.
Then it tries to find a C function inside this library to
be used as the loader.
The name of this C function is the string "luaopen_
"
concatenated with a copy of the module name where each dot
is replaced by an underscore.
Moreover, if the module name has a hyphen,
its prefix up to (and including) the first hyphen is removed.
For instance, if the module name is a.v1-b.c
,
the function name will be luaopen_b_c
.
If require
finds neither a Lua library nor a
C library for a module,
it calls the all-in-one loader.
This loader searches the C path for a library for
the root name of the given module.
For instance, when requiring a.b.c
,
it will search for a C library for a
.
If found, it looks into it for an open function for
the submodule;
in our example, that would be luaopen_a_b_c
.
With this facility, a package can pack several C submodules
into one single library,
with each submodule keeping its original open function.
Once a loader is found,
require
calls the loader with a single argument, modname
.
If the loader returns any value,
require
assigns the returned value to package.loaded[modname]
.
If the loader returns no value and
has not assigned any value to package.loaded[modname]
,
then require
assigns true to this entry.
In any case, require
returns the
final value of package.loaded[modname]
.
If there is any error loading or running the module,
or if it cannot find any loader for the module,
then require
signals an error.
package.cpath
The path used by require
to search for a C loader.
Lua initializes the C path package.cpath
in the same way
it initializes the Lua path package.path
,
using the environment variable LUA_CPATH
(plus another default path defined in luaconf.h
).
package.loaded
A table used by require
to control which
modules are already loaded.
When you require a module modname
and
package.loaded[modname]
is not false,
require
simply returns the value stored there.
package.loadlib (libname, funcname)
Dynamically links the host program with the C library libname
.
Inside this library, looks for a function funcname
and returns this function as a C function.
(So, funcname
must follow the protocol (see lua_CFunction
)).
This is a low-level function.
It completely bypasses the package and module system.
Unlike require
,
it does not perform any path searching and
does not automatically adds extensions.
libname
must be the complete file name of the C library,
including if necessary a path and extension.
funcname
must be the exact name exported by the C library
(which may depend on the C compiler and linker used).
This function is not supported by ANSI C.
As such, it is only available on some platforms
(Windows, Linux, Mac OS X, Solaris, BSD,
plus other Unix systems that support the dlfcn
standard).
package.path
The path used by require
to search for a Lua loader.
At start-up, Lua initializes this variable with
the value of the environment variable LUA_PATH
or
with a default path defined in luaconf.h
,
if the environment variable is not defined.
Any ";;
" in the value of the environment variable
is replaced by the default path.
A path is a sequence of templates separated by semicolons.
For each template, require
will change each interrogation
mark in the template by filename
,
which is modname
with each dot replaced by a
"directory separator" (such as "/
" in Unix);
then it will try to load the resulting file name.
So, for instance, if the Lua path is
"./?.lua;./?.lc;/usr/local/?/init.lua"
the search for a Lua loader for module foo
will try to load the files
./foo.lua
, ./foo.lc
, and
/usr/local/foo/init.lua
, in that order.
package.preload
A table to store loaders for specific modules
(see require
).
package.seeall (module)
Sets a metatable for module
with
its __index
field referring to the global environment,
so that this module inherits values
from the global environment.
To be used as an option to function module
.
This library provides generic functions for string manipulation, such as finding and extracting substrings, and pattern matching. When indexing a string in Lua, the first character is at position 1 (not at 0, as in C). Indices are allowed to be negative and are interpreted as indexing backwards, from the end of the string. Thus, the last character is at position -1, and so on.
The string library provides all its functions inside the table
string
.
It also sets a metatable for strings
where the __index
field points to the string
table.
Therefore, you can use the string functions in object-oriented style.
For instance, string.byte(s, i)
can be written as s:byte(i)
.
string.byte (s [, i [, j]])
s[i]
,
s[i+1]
, ···, s[j]
.
The default value for i
is 1;
the default value for j
is i
.
Note that numerical codes are not necessarily portable across platforms.
string.char (···)
Note that numerical codes are not necessarily portable across platforms.
string.dump (function)
Returns a string containing a binary representation of the given function,
so that a later loadstring
on this string returns
a copy of the function.
function
must be a Lua function without upvalues.
string.find (s, pattern [, init [, plain]])
pattern
in the string s
.
If it finds a match, then find
returns the indices of s
where this occurrence starts and ends;
otherwise, it returns nil.
A third, optional numerical argument init
specifies
where to start the search;
its default value is 1 and may be negative.
A value of true as a fourth, optional argument plain
turns off the pattern matching facilities,
so the function does a plain "find substring" operation,
with no characters in pattern
being considered "magic".
Note that if plain
is given, then init
must be given as well.
If the pattern has captures, then in a successful match the captured values are also returned, after the two indices.
string.format (formatstring, ···)
printf
family of
standard C functions.
The only differences are that the options/modifiers
*
, l
, L
, n
, p
,
and h
are not supported
and that there is an extra option, q
.
The q
option formats a string in a form suitable to be safely read
back by the Lua interpreter:
the string is written between double quotes,
and all double quotes, newlines, embedded zeros,
and backslashes in the string
are correctly escaped when written.
For instance, the call
string.format('%q', 'a string with "quotes" and \n new line')
will produce the string:
"a string with \"quotes\" and \ new line"
The options c
, d
, E
, e
, f
,
g
, G
, i
, o
, u
, X
, and x
all
expect a number as argument,
whereas q
and s
expect a string.
This function does not accept string values
containing embedded zeros,
except as arguments to the q
option.
string.gmatch (s, pattern)
pattern
over string s
.
If pattern
specifies no captures,
then the whole match is produced in each call.
As an example, the following loop
s = "hello world from Lua" for w in string.gmatch(s, "%a+") do print(w) end
will iterate over all the words from string s
,
printing one per line.
The next example collects all pairs key=value
from the
given string into a table:
t = {} s = "from=world, to=Lua" for k, v in string.gmatch(s, "(%w+)=(%w+)") do t[k] = v end
For this function, a '^
' at the start of a pattern does not
work as an anchor, as this would prevent the iteration.
string.gsub (s, pattern, repl [, n])
s
in which all occurrences of the pattern
have been
replaced by a replacement string specified by repl
,
which may be a string, a table, or a function.
gsub
also returns, as its second value,
the total number of substitutions made.
If repl
is a string, then its value is used for replacement.
The character %
works as an escape character:
any sequence in repl
of the form %n
,
with n between 1 and 9,
stands for the value of the n-th captured substring (see below).
The sequence %0
stands for the whole match.
The sequence %%
stands for a single %
.
If repl
is a table, then the table is queried for every match,
using the first capture as the key;
if the pattern specifies no captures,
then the whole match is used as the key.
If repl
is a function, then this function is called every time a
match occurs, with all captured substrings passed as arguments,
in order;
if the pattern specifies no captures,
then the whole match is passed as a sole argument.
If the value returned by the table query or by the function call is a string or a number, then it is used as the replacement string; otherwise, if it is false or nil, then there is no replacement (that is, the original match is kept in the string).
The optional last parameter n
limits
the maximum number of substitutions to occur.
For instance, when n
is 1 only the first occurrence of
pattern
is replaced.
Here are some examples:
x = string.gsub("hello world", "(%w+)", "%1 %1") --> x="hello hello world world" x = string.gsub("hello world", "%w+", "%0 %0", 1) --> x="hello hello world" x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1") --> x="world hello Lua from" x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv) --> x="home = /home/roberto, user = roberto" x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s) return loadstring(s)() end) --> x="4+5 = 9" local t = {name="lua", version="5.1"} x = string.gsub("$name-$version.tar.gz", "%$(%w+)", t) --> x="lua-5.1.tar.gz"
string.len (s)
""
has length 0.
Embedded zeros are counted,
so "a\000bc\000"
has length 5.
string.lower (s)
string.match (s, pattern [, init])
pattern
in the string s
.
If it finds one, then match
returns
the captures from the pattern;
otherwise it returns nil.
If pattern
specifies no captures,
then the whole match is returned.
A third, optional numerical argument init
specifies
where to start the search;
its default value is 1 and may be negative.
string.rep (s, n)
n
copies of
the string s
.
string.reverse (s)
s
reversed.
string.sub (s, i [, j])
s
that
starts at i
and continues until j
;
i
and j
may be negative.
If j
is absent, then it is assumed to be equal to -1
(which is the same as the string length).
In particular,
the call string.sub(s,1,j)
returns a prefix of s
with length j
,
and string.sub(s, -i)
returns a suffix of s
with length i
.
string.upper (s)
A character class is used to represent a set of characters. The following combinations are allowed in describing a character class:
^$()%.[]*+-?
)
represents the character x itself.
.
: (a dot) represents all characters.%a
: represents all letters.%c
: represents all control characters.%d
: represents all digits.%l
: represents all lowercase letters.%p
: represents all punctuation characters.%s
: represents all space characters.%u
: represents all uppercase letters.%w
: represents all alphanumeric characters.%x
: represents all hexadecimal digits.%z
: represents the character with representation 0.%x
: (where x is any non-alphanumeric character)
represents the character x.
This is the standard way to escape the magic characters.
Any punctuation character (even the non magic)
can be preceded by a '%
'
when used to represent itself in a pattern.
[set]
:
represents the class which is the union of all
characters in set.
A range of characters may be specified by
separating the end characters of the range with a '-
'.
All classes %
x described above may also be used as
components in set.
All other characters in set represent themselves.
For example, [%w_]
(or [_%w]
)
represents all alphanumeric characters plus the underscore,
[0-7]
represents the octal digits,
and [0-7%l%-]
represents the octal digits plus
the lowercase letters plus the '-
' character.
The interaction between ranges and classes is not defined.
Therefore, patterns like [%a-z]
or [a-%%]
have no meaning.
[^set]
:
represents the complement of set,
where set is interpreted as above.
For all classes represented by single letters (%a
, %c
, etc.),
the corresponding uppercase letter represents the complement of the class.
For instance, %S
represents all non-space characters.
The definitions of letter, space, and other character groups
depend on the current locale.
In particular, the class [a-z]
may not be equivalent to %l
.
A pattern item may be
*
',
which matches 0 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
+
',
which matches 1 or more repetitions of characters in the class.
These repetition items will always match the longest possible sequence;
-
',
which also matches 0 or more repetitions of characters in the class.
Unlike '*
',
these repetition items will always match the shortest possible sequence;
?
',
which matches 0 or 1 occurrence of a character in the class;
%n
, for n between 1 and 9;
such item matches a substring equal to the n-th captured string
(see below);
%bxy
, where x and y are two distinct characters;
such item matches strings that start with x, end with y,
and where the x and y are balanced.
This means that, if one reads the string from left to right,
counting +1 for an x and -1 for a y,
the ending y is the first y where the count reaches 0.
For instance, the item %b()
matches expressions with
balanced parentheses.
A pattern is a sequence of pattern items.
A '^
' at the beginning of a pattern anchors the match at the
beginning of the subject string.
A '$
' at the end of a pattern anchors the match at the
end of the subject string.
At other positions,
'^
' and '$
' have no special meaning and represent themselves.
A pattern may contain sub-patterns enclosed in parentheses;
they describe captures.
When a match succeeds, the substrings of the subject string
that match captures are stored (captured) for future use.
Captures are numbered according to their left parentheses.
For instance, in the pattern "(a*(.)%w(%s*))"
,
the part of the string matching "a*(.)%w(%s*)"
is
stored as the first capture (and therefore has number 1);
the character matching ".
" is captured with number 2,
and the part matching "%s*
" has number 3.
As a special case, the empty capture ()
captures
the current string position (a number).
For instance, if we apply the pattern "()aa()"
on the
string "flaaap"
, there will be two captures: 3 and 5.
A pattern cannot contain embedded zeros. Use %z
instead.
This library provides generic functions for table manipulation.
It provides all its functions inside the table table
.
Most functions in the table library assume that the table represents an array or a list. For these functions, when we talk about the "length" of a table we mean the result of the length operator.
table.concat (table [, sep [, i [, j]]])
table[i]..sep..table[i+1] ··· sep..table[j]
.
The default value for sep
is the empty string,
the default for i
is 1,
and the default for j
is the length of the table.
If i
is greater than j
, returns the empty string.
table.insert (table, [pos,] value)
Inserts element value
at position pos
in table
,
shifting up other elements to open space, if necessary.
The default value for pos
is n+1
,
where n
is the length of the table (see §2.5.5),
so that a call table.insert(t,x)
inserts x
at the end
of table t
.
table.maxn (table)
Returns the largest positive numerical index of the given table, or zero if the table has no positive numerical indices. (To do its job this function does a linear traversal of the whole table.)
table.remove (table [, pos])
Removes from table
the element at position pos
,
shifting down other elements to close the space, if necessary.
Returns the value of the removed element.
The default value for pos
is n
,
where n
is the length of the table,
so that a call table.remove(t)
removes the last element
of table t
.
table.sort (table [, comp])
table[1]
to table[n]
,
where n
is the length of the table.
If comp
is given,
then it must be a function that receives two table elements,
and returns true
when the first is less than the second
(so that not comp(a[i+1],a[i])
will be true after the sort).
If comp
is not given,
then the standard Lua operator <
is used instead.
The sort algorithm is not stable; that is, elements considered equal by the given order may have their relative positions changed by the sort.
This library is an interface to the standard C math library.
It provides all its functions inside the table math
.
math.abs (x)
Returns the absolute value of x
.
math.acos (x)
Returns the arc cosine of x
(in radians).
math.asin (x)
Returns the arc sine of x
(in radians).
math.atan (x)
Returns the arc tangent of x
(in radians).
math.atan2 (x, y)
Returns the arc tangent of x/y
(in radians),
but uses the signs of both parameters to find the
quadrant of the result.
(It also handles correctly the case of y
being zero.)
math.ceil (x)
Returns the smallest integer larger than or equal to x
.
math.cos (x)
Returns the cosine of x
(assumed to be in radians).
math.cosh (x)
Returns the hyperbolic cosine of x
.
math.deg (x)
Returns the angle x
(given in radians) in degrees.
math.exp (x)
Returns the the value ex.
math.floor (x)
Returns the largest integer smaller than or equal to x
.
math.fmod (x, y)
Returns the remainder of the division of x
by y
.
math.frexp (x)
Returns m
and e
such that x = m2e,
e
is an integer and the absolute value of m
is
in the range [0.5, 1)
(or zero when x
is zero).
math.huge
The value HUGE_VAL
,
a value larger than or equal to any other numerical value.
math.ldexp (m, e)
Returns m2e (e
should be an integer).
math.log (x)
Returns the natural logarithm of x
.
math.log10 (x)
Returns the base-10 logarithm of x
.
math.max (x, ···)
Returns the maximum value among its arguments.
math.min (x, ···)
Returns the minimum value among its arguments.
math.modf (x)
Returns two numbers,
the integral part of x
and the fractional part of x
.
math.pi
The value of pi.
math.pow (x, y)
Returns xy.
(You can also use the expression x^y
to compute this value.)
math.rad (x)
Returns the angle x
(given in degrees) in radians.
math.random ([m [, n]])
This function is an interface to the simple
pseudo-random generator function rand
provided by ANSI C.
(No guarantees can be given for its statistical properties.)
When called without arguments,
returns a pseudo-random real number
in the range [0,1).
When called with a number m
,
math.random
returns
a pseudo-random integer in the range [1, m].
When called with two numbers m
and n
,
math.random
returns a pseudo-random
integer in the range [m, n].
math.randomseed (x)
Sets x
as the "seed"
for the pseudo-random generator:
equal seeds produce equal sequences of numbers.
math.sin (x)
Returns the sine of x
(assumed to be in radians).
math.sinh (x)
Returns the hyperbolic sine of x
.
math.sqrt (x)
Returns the square root of x
.
(You can also use the expression x^0.5
to compute this value.)
math.tan (x)
Returns the tangent of x
(assumed to be in radians).
math.tanh (x)
Returns the hyperbolic tangent of x
.
The I/O library provides two different styles for file manipulation. The first one uses implicit file descriptors; that is, there are operations to set a default input file and a default output file, and all input/output operations are over these default files. The second style uses explicit file descriptors.
When using implicit file descriptors,
all operations are supplied by table io
.
When using explicit file descriptors,
the operation io.open
returns a file descriptor
and then all operations are supplied as methods of the file descriptor.
The table io
also provides
three predefined file descriptors with their usual meanings from C:
io.stdin
, io.stdout
, and io.stderr
.
Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second result and a system-dependent error code as a third result) and some value different from nil on success.
io.close ([file])
Equivalent to file:close()
.
Without a file
, closes the default output file.
io.flush ()
Equivalent to file:flush
over the default output file.
io.input ([file])
When called with a file name, it opens the named file (in text mode), and sets its handle as the default input file. When called with a file handle, it simply sets this file handle as the default input file. When called without parameters, it returns the current default input file.
In case of errors this function raises the error, instead of returning an error code.
io.lines ([filename])
Opens the given file name in read mode and returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the construction
for line in io.lines(filename) do body end
will iterate over all lines of the file. When the iterator function detects the end of file, it returns nil (to finish the loop) and automatically closes the file.
The call io.lines()
(with no file name) is equivalent
to io.input():lines()
;
that is, it iterates over the lines of the default input file.
In this case it does not close the file when the loop ends.
io.open (filename [, mode])
This function opens a file,
in the mode specified in the string mode
.
It returns a new file handle,
or, in case of errors, nil plus an error message.
The mode
string can be any of the following:
The mode
string may also have a 'b
' at the end,
which is needed in some systems to open the file in binary mode.
This string is exactly what is used in the
standard C function fopen
.
io.output ([file])
Similar to io.input
, but operates over the default output file.
io.popen (prog [, mode])
Starts program prog
in a separated process and returns
a file handle that you can use to read data from this program
(if mode
is "r"
, the default)
or to write data to this program
(if mode
is "w"
).
This function is system dependent and is not available on all platforms.
io.read (···)
Equivalent to io.input():read
.
io.tmpfile ()
Returns a handle for a temporary file. This file is opened in update mode and it is automatically removed when the program ends.
io.type (obj)
Checks whether obj
is a valid file handle.
Returns the string "file"
if obj
is an open file handle,
"closed file"
if obj
is a closed file handle,
or nil if obj
is not a file handle.
io.write (···)
Equivalent to io.output():write
.
file:close ()
Closes file
.
Note that files are automatically closed when
their handles are garbage collected,
but that takes an unpredictable amount of time to happen.
file:flush ()
Saves any written data to file
.
file:lines ()
Returns an iterator function that, each time it is called, returns a new line from the file. Therefore, the construction
for line in file:lines() do body end
will iterate over all lines of the file.
(Unlike io.lines
, this function does not close the file
when the loop ends.)
file:read (···)
Reads the file file
,
according to the given formats, which specify what to read.
For each format,
the function returns a string (or a number) with the characters read,
or nil if it cannot read data with the specified format.
When called without formats,
it uses a default format that reads the entire next line
(see below).
The available formats are
file:seek ([whence] [, offset])
Sets and gets the file position,
measured from the beginning of the file,
to the position given by offset
plus a base
specified by the string whence
, as follows:
In case of success, function seek
returns the final file position,
measured in bytes from the beginning of the file.
If this function fails, it returns nil,
plus a string describing the error.
The default value for whence
is "cur"
,
and for offset
is 0.
Therefore, the call file:seek()
returns the current
file position, without changing it;
the call file:seek("set")
sets the position to the
beginning of the file (and returns 0);
and the call file:seek("end")
sets the position to the
end of the file, and returns its size.
file:setvbuf (mode [, size])
Sets the buffering mode for an output file. There are three available modes:
flush
the file
(see io.flush
)).
For the last two cases, size
specifies the size of the buffer, in bytes.
The default is an appropriate size.
file:write (···)
Writes the value of each of its arguments to
the file
.
The arguments must be strings or numbers.
To write other values,
use tostring
or string.format
before write
.
This library is implemented through table os
.
os.clock ()
Returns an approximation of the amount in seconds of CPU time used by the program.
os.date ([format [, time]])
Returns a string or a table containing date and time,
formatted according to the given string format
.
If the time
argument is present,
this is the time to be formatted
(see the os.time
function for a description of this value).
Otherwise, date
formats the current time.
If format
starts with '!
',
then the date is formatted in Coordinated Universal Time.
After this optional character,
if format
is the string "*t
",
then date
returns a table with the following fields:
year
(four digits), month
(1--12), day
(1--31),
hour
(0--23), min
(0--59), sec
(0--61),
wday
(weekday, Sunday is 1),
yday
(day of the year),
and isdst
(daylight saving flag, a boolean).
If format
is not "*t
",
then date
returns the date as a string,
formatted according to the same rules as the C function strftime
.
When called without arguments,
date
returns a reasonable date and time representation that depends on
the host system and on the current locale
(that is, os.date()
is equivalent to os.date("%c")
).
os.difftime (t2, t1)
Returns the number of seconds from time t1
to time t2
.
In POSIX, Windows, and some other systems,
this value is exactly t2
-t1
.
os.execute ([command])
This function is equivalent to the C function system
.
It passes command
to be executed by an operating system shell.
It returns a status code, which is system-dependent.
If command
is absent, then it returns nonzero if a shell is available
and zero otherwise.
os.exit ([code])
Calls the C function exit
,
with an optional code
,
to terminate the host program.
The default value for code
is the success code.
os.getenv (varname)
Returns the value of the process environment variable varname
,
or nil if the variable is not defined.
os.remove (filename)
Deletes the file or directory with the given name. Directories must be empty to be removed. If this function fails, it returns nil, plus a string describing the error.
os.rename (oldname, newname)
Renames file or directory named oldname
to newname
.
If this function fails, it returns nil,
plus a string describing the error.
os.setlocale (locale [, category])
Sets the current locale of the program.
locale
is a string specifying a locale;
category
is an optional string describing which category to change:
"all"
, "collate"
, "ctype"
,
"monetary"
, "numeric"
, or "time"
;
the default category is "all"
.
The function returns the name of the new locale,
or nil if the request cannot be honored.
If locale
is the empty string,
the current locate is set to an implementation-defined native locale.
If locate
is the string "C
",
the current locate is set to the standard C locale.
When called with nil as the first argument, this function only returns the name of the current locale for the given category.
os.time ([table])
Returns the current time when called without arguments,
or a time representing the date and time specified by the given table.
This table must have fields year
, month
, and day
,
and may have fields hour
, min
, sec
, and isdst
(for a description of these fields, see the os.date
function).
The returned value is a number, whose meaning depends on your system.
In POSIX, Windows, and some other systems, this number counts the number
of seconds since some given start time (the "epoch").
In other systems, the meaning is not specified,
and the number returned by time
can be used only as an argument to
date
and difftime
.
os.tmpname ()
Returns a string with a file name that can be used for a temporary file. The file must be explicitly opened before its use and explicitly removed when no longer needed.
This library provides the functionality of the debug interface to Lua programs. You should exert care when using this library. The functions provided here should be used exclusively for debugging and similar tasks, such as profiling. Please resist the temptation to use them as a usual programming tool: they can be very slow. Moreover, several of its functions violate some assumptions about Lua code (e.g., that variables local to a function cannot be accessed from outside or that userdata metatables cannot be changed by Lua code) and therefore can compromise otherwise secure code.
All functions in this library are provided
inside the debug
table.
All functions that operate over a thread
have an optional first argument which is the
thread to operate over.
The default is always the current thread.
debug.debug ()
Enters an interactive mode with the user,
running each string that the user enters.
Using simple commands and other debug facilities,
the user can inspect global and local variables,
change their values, evaluate expressions, and so on.
A line containing only the word cont
finishes this function,
so that the caller continues its execution.
Note that commands for debug.debug
are not lexically nested
within any function, and so have no direct access to local variables.
debug.getfenv (o)
o
.
debug.gethook ([thread])
Returns the current hook settings of the thread, as three values:
the current hook function, the current hook mask,
and the current hook count
(as set by the debug.sethook
function).
debug.getinfo ([thread,] function [, what])
Returns a table with information about a function.
You can give the function directly,
or you can give a number as the value of function
,
which means the function running at level function
of the call stack
of the given thread:
level 0 is the current function (getinfo
itself);
level 1 is the function that called getinfo
;
and so on.
If function
is a number larger than the number of active functions,
then getinfo
returns nil.
The returned table may contain all the fields returned by lua_getinfo
,
with the string what
describing which fields to fill in.
The default for what
is to get all information available,
except the table of valid lines.
If present,
the option 'f
'
adds a field named func
with the function itself.
If present,
the option 'L
'
adds a field named activelines
with the table of
valid lines.
For instance, the expression debug.getinfo(1,"n").name
returns
a name of the current function, if a reasonable name can be found,
and the expression debug.getinfo(print)
returns a table with all available information
about the print
function.
debug.getlocal ([thread,] level, local)
This function returns the name and the value of the local variable
with index local
of the function at level level
of the stack.
(The first parameter or local variable has index 1, and so on,
until the last active local variable.)
The function returns nil if there is no local
variable with the given index,
and raises an error when called with a level
out of range.
(You can call debug.getinfo
to check whether the level is valid.)
Variable names starting with '(
' (open parentheses)
represent internal variables
(loop control variables, temporaries, and C function locals).
debug.getmetatable (object)
Returns the metatable of the given object
or nil if it does not have a metatable.
debug.getregistry ()
Returns the registry table (see §3.5).
debug.getupvalue (func, up)
This function returns the name and the value of the upvalue
with index up
of the function func
.
The function returns nil if there is no upvalue with the given index.
debug.setfenv (object, table)
Sets the environment of the given object
to the given table
.
Returns object
.
debug.sethook ([thread,] hook, mask [, count])
Sets the given function as a hook.
The string mask
and the number count
describe
when the hook will be called.
The string mask may have the following characters,
with the given meaning:
"c"
: The hook is called every time Lua calls a function;"r"
: The hook is called every time Lua returns from a function;"l"
: The hook is called every time Lua enters a new line of code.
With a count
different from zero,
the hook is called after every count
instructions.
When called without arguments,
debug.sethook
turns off the hook.
When the hook is called, its first parameter is a string
describing the event that has triggered its call:
"call"
, "return"
(or "tail return"
),
"line"
, and "count"
.
For line events,
the hook also gets the new line number as its second parameter.
Inside a hook,
you can call getinfo
with level 2 to get more information about
the running function
(level 0 is the getinfo
function,
and level 1 is the hook function),
unless the event is "tail return"
.
In this case, Lua is only simulating the return,
and a call to getinfo
will return invalid data.
debug.setlocal ([thread,] level, local, value)
This function assigns the value value
to the local variable
with index local
of the function at level level
of the stack.
The function returns nil if there is no local
variable with the given index,
and raises an error when called with a level
out of range.
(You can call getinfo
to check whether the level is valid.)
Otherwise, it returns the name of the local variable.
debug.setmetatable (object, table)
Sets the metatable for the given object
to the given table
(which can be nil).
debug.setupvalue (func, up, value)
This function assigns the value value
to the upvalue
with index up
of the function func
.
The function returns nil if there is no upvalue
with the given index.
Otherwise, it returns the name of the upvalue.
debug.traceback ([thread,] [message] [, level])
Returns a string with a traceback of the call stack.
An optional message
string is appended
at the beginning of the traceback.
An optional level
number tells at which level
to start the traceback
(default is 1, the function calling traceback
).
Although Lua has been designed as an extension language,
to be embedded in a host C program,
it is also frequently used as a stand-alone language.
An interpreter for Lua as a stand-alone language,
called simply lua
,
is provided with the standard distribution.
The stand-alone interpreter includes
all standard libraries, including the debug library.
Its usage is:
lua [options] [script [args]]
The options are:
-e stat
: executes string stat;-l mod
: "requires" mod;-i
: enters interactive mode after running script;-v
: prints version information;--
: stops handling options;-
: executes stdin
as a file and stops handling options.
After handling its options, lua
runs the given script,
passing to it the given args as string arguments.
When called without arguments,
lua
behaves as lua -v -i
when the standard input (stdin
) is a terminal,
and as lua -
otherwise.
Before running any argument,
the interpreter checks for an environment variable LUA_INIT
.
If its format is @filename
,
then lua
executes the file.
Otherwise, lua
executes the string itself.
All options are handled in order, except -i
.
For instance, an invocation like
$ lua -e'a=1' -e 'print(a)' script.lua
will first set a
to 1, then print the value of a
(which is '1
'),
and finally run the file script.lua
with no arguments.
(Here $
is the shell prompt. Your prompt may be different.)
Before starting to run the script,
lua
collects all arguments in the command line
in a global table called arg
.
The script name is stored at index 0,
the first argument after the script name goes to index 1,
and so on.
Any arguments before the script name
(that is, the interpreter name plus the options)
go to negative indices.
For instance, in the call
$ lua -la b.lua t1 t2
the interpreter first runs the file a.lua
,
then creates a table
arg = { [-2] = "lua", [-1] = "-la", [0] = "b.lua", [1] = "t1", [2] = "t2" }
and finally runs the file b.lua
.
The script is called with arg[1]
, arg[2]
, ···
as arguments;
it can also access these arguments with the vararg expression '...
'.
In interactive mode, if you write an incomplete statement, the interpreter waits for its completion by issuing a different prompt.
If the global variable _PROMPT
contains a string,
then its value is used as the prompt.
Similarly, if the global variable _PROMPT2
contains a string,
its value is used as the secondary prompt
(issued during incomplete statements).
Therefore, both prompts can be changed directly on the command line.
For instance,
$ lua -e"_PROMPT='myprompt> '" -i
(the outer pair of quotes is for the shell,
the inner pair is for Lua),
or in any Lua programs by assigning to _PROMPT
.
Note the use of -i
to enter interactive mode; otherwise,
the program would just end silently right after the assignment to _PROMPT
.
To allow the use of Lua as a
script interpreter in Unix systems,
the stand-alone interpreter skips
the first line of a chunk if it starts with #
.
Therefore, Lua scripts can be made into executable programs
by using chmod +x
and the #!
form,
as in
#!/usr/local/bin/lua
(Of course,
the location of the Lua interpreter may be different in your machine.
If lua
is in your PATH
,
then
#!/usr/bin/env lua
is a more portable solution.)
Here we list the incompatibilities that you may found when moving a program
from Lua 5.0 to Lua 5.1.
You can avoid most of the incompatibilities compiling Lua with
appropriate options (see file luaconf.h
).
However,
all these compatibility options will be removed in the next version of Lua.
arg
with a
table with the extra arguments to the vararg expression.
(See compile-time option LUA_COMPAT_VARARG
in luaconf.h
.)
[[string]]
)
does not allow nesting.
You can use the new syntax ([=[string]=]
) in these cases.
(See compile-time option LUA_COMPAT_LSTR
in luaconf.h
.)
string.gfind
was renamed string.gmatch
.
(See compile-time option LUA_COMPAT_GFIND
in luaconf.h
.)
string.gsub
is called with a function as its
third argument,
whenever this function returns nil or false the
replacement string is the whole match,
instead of the empty string.
table.setn
was deprecated.
Function table.getn
corresponds
to the new length operator (#
);
use the operator instead of the function.
(See compile-time option LUA_COMPAT_GETN
in luaconf.h
.)
loadlib
was renamed package.loadlib
.
(See compile-time option LUA_COMPAT_LOADLIB
in luaconf.h
.)
math.mod
was renamed math.fmod
.
(See compile-time option LUA_COMPAT_MOD
in luaconf.h
.)
table.foreach
and table.foreachi
are deprecated.
You can use a for loop with pairs
or ipairs
instead.
require
due to
the new module system.
However, the new behavior is mostly compatible with the old,
but require
gets the path from package.path
instead
of from LUA_PATH
.
collectgarbage
has different arguments.
Function gcinfo
is deprecated;
use collectgarbage("count")
instead.
luaopen_*
functions (to open libraries)
cannot be called directly,
like a regular C function.
They must be called through Lua,
like a Lua function.
lua_open
was replaced by lua_newstate
to
allow the user to set a memory-allocation function.
You can use luaL_newstate
from the standard library to
create a state with a standard allocation function
(based on realloc
).
luaL_getn
and luaL_setn
(from the auxiliary library) are deprecated.
Use lua_objlen
instead of luaL_getn
and nothing instead of luaL_setn
.
luaL_openlib
was replaced by luaL_register
.
luaL_checkudata
now throws an error when the given value
is not a userdata of the expected type.
(In Lua 5.0 it returned NULL
.)
Here is the complete syntax of Lua in extended BNF. (It does not describe operator precedences.)
chunk ::= {stat [`;´]} [laststat [`;´]] block ::= chunk stat ::= varlist1 `=´ explist1 | functioncall | do block end | while exp do block end | repeat block until exp | if exp then block {elseif exp then block} [else block] end | for Name `=´ exp `,´ exp [`,´ exp] do block end | for namelist in explist1 do block end | function funcname funcbody | local function Name funcbody | local namelist [`=´ explist1] laststat ::= return [explist1] | break funcname ::= Name {`.´ Name} [`:´ Name] varlist1 ::= var {`,´ var} var ::= Name | prefixexp `[´ exp `]´ | prefixexp `.´ Name namelist ::= Name {`,´ Name} explist1 ::= {exp `,´} exp exp ::= nil | false | true | Number | String | `...´ | function | prefixexp | tableconstructor | exp binop exp | unop exp prefixexp ::= var | functioncall | `(´ exp `)´ functioncall ::= prefixexp args | prefixexp `:´ Name args args ::= `(´ [explist1] `)´ | tableconstructor | String function ::= function funcbody funcbody ::= `(´ [parlist1] `)´ block end parlist1 ::= namelist [`,´ `...´] | `...´ tableconstructor ::= `{´ [fieldlist] `}´ fieldlist ::= field {fieldsep field} [fieldsep] field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp fieldsep ::= `,´ | `;´ binop ::= `+´ | `-´ | `*´ | `/´ | `^´ | `%´ | `..´ | `<´ | `<=´ | `>´ | `>=´ | `==´ | `~=´ | and | or unop ::= `-´ | not | `#´