/* ** Client for the GDB JIT API. ** Copyright (C) 2005-2015 Mike Pall. See Copyright Notice in luajit.h */ #define lj_gdbjit_c #define LUA_CORE #include "lj_obj.h" #if LJ_HASJIT #include "lj_gc.h" #include "lj_err.h" #include "lj_debug.h" #include "lj_frame.h" #include "lj_jit.h" #include "lj_dispatch.h" /* This is not compiled in by default. ** Enable with -DLUAJIT_USE_GDBJIT in the Makefile and recompile everything. */ #ifdef LUAJIT_USE_GDBJIT /* The GDB JIT API allows JIT compilers to pass debug information about ** JIT-compiled code back to GDB. You need at least GDB 7.0 or higher ** to see it in action. ** ** This is a passive API, so it works even when not running under GDB ** or when attaching to an already running process. Alas, this implies ** enabling it always has a non-negligible overhead -- do not use in ** release mode! ** ** The LuaJIT GDB JIT client is rather minimal at the moment. It gives ** each trace a symbol name and adds a source location and frame unwind ** information. Obviously LuaJIT itself and any embedding C application ** should be compiled with debug symbols, too (see the Makefile). ** ** Traces are named TRACE_1, TRACE_2, ... these correspond to the trace ** numbers from -jv or -jdump. Use "break TRACE_1" or "tbreak TRACE_1" etc. ** to set breakpoints on specific traces (even ahead of their creation). ** ** The source location for each trace allows listing the corresponding ** source lines with the GDB command "list" (but only if the Lua source ** has been loaded from a file). Currently this is always set to the ** location where the trace has been started. ** ** Frame unwind information can be inspected with the GDB command ** "info frame". This also allows proper backtraces across JIT-compiled ** code with the GDB command "bt". ** ** You probably want to add the following settings to a .gdbinit file ** (or add them to ~/.gdbinit): ** set disassembly-flavor intel ** set breakpoint pending on ** ** Here's a sample GDB session: ** ------------------------------------------------------------------------ $ cat >x.lua for outer=1,100 do for inner=1,100 do end end ^D $ luajit -jv x.lua [TRACE 1 x.lua:2] [TRACE 2 (1/3) x.lua:1 -> 1] $ gdb --quiet --args luajit x.lua (gdb) tbreak TRACE_1 Function "TRACE_1" not defined. Temporary breakpoint 1 (TRACE_1) pending. (gdb) run Starting program: luajit x.lua Temporary breakpoint 1, TRACE_1 () at x.lua:2 2 for inner=1,100 do end (gdb) list 1 for outer=1,100 do 2 for inner=1,100 do end 3 end (gdb) bt #0 TRACE_1 () at x.lua:2 #1 0x08053690 in lua_pcall [...] [...] #7 0x0806ff90 in main [...] (gdb) disass TRACE_1 Dump of assembler code for function TRACE_1: 0xf7fd9fba : mov DWORD PTR ds:0xf7e0e2a0,0x1 0xf7fd9fc4 : movsd xmm7,QWORD PTR [edx+0x20] [...] 0xf7fd9ff8 : jmp 0xf7fd2014 End of assembler dump. (gdb) tbreak TRACE_2 Function "TRACE_2" not defined. Temporary breakpoint 2 (TRACE_2) pending. (gdb) cont Continuing. Temporary breakpoint 2, TRACE_2 () at x.lua:1 1 for outer=1,100 do (gdb) info frame Stack level 0, frame at 0xffffd7c0: eip = 0xf7fd9f60 in TRACE_2 (x.lua:1); saved eip 0x8053690 called by frame at 0xffffd7e0 source language unknown. Arglist at 0xffffd78c, args: Locals at 0xffffd78c, Previous frame's sp is 0xffffd7c0 Saved registers: ebx at 0xffffd7ac, ebp at 0xffffd7b8, esi at 0xffffd7b0, edi at 0xffffd7b4, eip at 0xffffd7bc (gdb) ** ------------------------------------------------------------------------ */ /* -- GDB JIT API --------------------------------------------------------- */ /* GDB JIT actions. */ enum { GDBJIT_NOACTION = 0, GDBJIT_REGISTER, GDBJIT_UNREGISTER }; /* GDB JIT entry. */ typedef struct GDBJITentry { struct GDBJITentry *next_entry; struct GDBJITentry *prev_entry; const char *symfile_addr; uint64_t symfile_size; } GDBJITentry; /* GDB JIT descriptor. */ typedef struct GDBJITdesc { uint32_t version; uint32_t action_flag; GDBJITentry *relevant_entry; GDBJITentry *first_entry; } GDBJITdesc; GDBJITdesc __jit_debug_descriptor = { 1, GDBJIT_NOACTION, NULL, NULL }; /* GDB sets a breakpoint at this function. */ void LJ_NOINLINE __jit_debug_register_code() { __asm__ __volatile__(""); }; /* -- In-memory ELF object definitions ------------------------------------ */ /* ELF definitions. */ typedef struct ELFheader { uint8_t emagic[4]; uint8_t eclass; uint8_t eendian; uint8_t eversion; uint8_t eosabi; uint8_t eabiversion; uint8_t epad[7]; uint16_t type; uint16_t machine; uint32_t version; uintptr_t entry; uintptr_t phofs; uintptr_t shofs; uint32_t flags; uint16_t ehsize; uint16_t phentsize; uint16_t phnum; uint16_t shentsize; uint16_t shnum; uint16_t shstridx; } ELFheader; typedef struct ELFsectheader { uint32_t name; uint32_t type; uintptr_t flags; uintptr_t addr; uintptr_t ofs; uintptr_t size; uint32_t link; uint32_t info; uintptr_t align; uintptr_t entsize; } ELFsectheader; #define ELFSECT_IDX_ABS 0xfff1 enum { ELFSECT_TYPE_PROGBITS = 1, ELFSECT_TYPE_SYMTAB = 2, ELFSECT_TYPE_STRTAB = 3, ELFSECT_TYPE_NOBITS = 8 }; #define ELFSECT_FLAGS_WRITE 1 #define ELFSECT_FLAGS_ALLOC 2 #define ELFSECT_FLAGS_EXEC 4 typedef struct ELFsymbol { #if LJ_64 uint32_t name; uint8_t info; uint8_t other; uint16_t sectidx; uintptr_t value; uint64_t size; #else uint32_t name; uintptr_t value; uint32_t size; uint8_t info; uint8_t other; uint16_t sectidx; #endif } ELFsymbol; enum { ELFSYM_TYPE_FUNC = 2, ELFSYM_TYPE_FILE = 4, ELFSYM_BIND_LOCAL = 0 << 4, ELFSYM_BIND_GLOBAL = 1 << 4, }; /* DWARF definitions. */ #define DW_CIE_VERSION 1 enum { DW_CFA_nop = 0x0, DW_CFA_offset_extended = 0x5, DW_CFA_def_cfa = 0xc, DW_CFA_def_cfa_offset = 0xe, DW_CFA_offset_extended_sf = 0x11, DW_CFA_advance_loc = 0x40, DW_CFA_offset = 0x80 }; enum { DW_EH_PE_udata4 = 3, DW_EH_PE_textrel = 0x20 }; enum { DW_TAG_compile_unit = 0x11 }; enum { DW_children_no = 0, DW_children_yes = 1 }; enum { DW_AT_name = 0x03, DW_AT_stmt_list = 0x10, DW_AT_low_pc = 0x11, DW_AT_high_pc = 0x12 }; enum { DW_FORM_addr = 0x01, DW_FORM_data4 = 0x06, DW_FORM_string = 0x08 }; enum { DW_LNS_extended_op = 0, DW_LNS_copy = 1, DW_LNS_advance_pc = 2, DW_LNS_advance_line = 3 }; enum { DW_LNE_end_sequence = 1, DW_LNE_set_address = 2 }; enum { #if LJ_TARGET_X86 DW_REG_AX, DW_REG_CX, DW_REG_DX, DW_REG_BX, DW_REG_SP, DW_REG_BP, DW_REG_SI, DW_REG_DI, DW_REG_RA, #elif LJ_TARGET_X64 /* Yes, the order is strange, but correct. */ DW_REG_AX, DW_REG_DX, DW_REG_CX, DW_REG_BX, DW_REG_SI, DW_REG_DI, DW_REG_BP, DW_REG_SP, DW_REG_8, DW_REG_9, DW_REG_10, DW_REG_11, DW_REG_12, DW_REG_13, DW_REG_14, DW_REG_15, DW_REG_RA, #elif LJ_TARGET_ARM DW_REG_SP = 13, DW_REG_RA = 14, #elif LJ_TARGET_PPC DW_REG_SP = 1, DW_REG_RA = 65, DW_REG_CR = 70, #elif LJ_TARGET_MIPS DW_REG_SP = 29, DW_REG_RA = 31, #else #error "Unsupported target architecture" #endif }; /* Minimal list of sections for the in-memory ELF object. */ enum { GDBJIT_SECT_NULL, GDBJIT_SECT_text, GDBJIT_SECT_eh_frame, GDBJIT_SECT_shstrtab, GDBJIT_SECT_strtab, GDBJIT_SECT_symtab, GDBJIT_SECT_debug_info, GDBJIT_SECT_debug_abbrev, GDBJIT_SECT_debug_line, GDBJIT_SECT__MAX }; enum { GDBJIT_SYM_UNDEF, GDBJIT_SYM_FILE, GDBJIT_SYM_FUNC, GDBJIT_SYM__MAX }; /* In-memory ELF object. */ typedef struct GDBJITobj { ELFheader hdr; /* ELF header. */ ELFsectheader sect[GDBJIT_SECT__MAX]; /* ELF sections. */ ELFsymbol sym[GDBJIT_SYM__MAX]; /* ELF symbol table. */ uint8_t space[4096]; /* Space for various section data. */ } GDBJITobj; /* Combined structure for GDB JIT entry and ELF object. */ typedef struct GDBJITentryobj { GDBJITentry entry; size_t sz; GDBJITobj obj; } GDBJITentryobj; /* Template for in-memory ELF header. */ static const ELFheader elfhdr_template = { .emagic = { 0x7f, 'E', 'L', 'F' }, .eclass = LJ_64 ? 2 : 1, .eendian = LJ_ENDIAN_SELECT(1, 2), .eversion = 1, #if LJ_TARGET_LINUX .eosabi = 0, /* Nope, it's not 3. */ #elif defined(__FreeBSD__) .eosabi = 9, #elif defined(__NetBSD__) .eosabi = 2, #elif defined(__OpenBSD__) .eosabi = 12, #elif defined(__DragonFly__) .eosabi = 0, #elif (defined(__sun__) && defined(__svr4__)) .eosabi = 6, #else .eosabi = 0, #endif .eabiversion = 0, .epad = { 0, 0, 0, 0, 0, 0, 0 }, .type = 1, #if LJ_TARGET_X86 .machine = 3, #elif LJ_TARGET_X64 .machine = 62, #elif LJ_TARGET_ARM .machine = 40, #elif LJ_TARGET_PPC .machine = 20, #elif LJ_TARGET_MIPS .machine = 8, #else #error "Unsupported target architecture" #endif .version = 1, .entry = 0, .phofs = 0, .shofs = offsetof(GDBJITobj, sect), .flags = 0, .ehsize = sizeof(ELFheader), .phentsize = 0, .phnum = 0, .shentsize = sizeof(ELFsectheader), .shnum = GDBJIT_SECT__MAX, .shstridx = GDBJIT_SECT_shstrtab }; /* -- In-memory ELF object generation ------------------------------------- */ /* Context for generating the ELF object for the GDB JIT API. */ typedef struct GDBJITctx { uint8_t *p; /* Pointer to next address in obj.space. */ uint8_t *startp; /* Pointer to start address in obj.space. */ GCtrace *T; /* Generate symbols for this trace. */ uintptr_t mcaddr; /* Machine code address. */ MSize szmcode; /* Size of machine code. */ MSize spadjp; /* Stack adjustment for parent trace or interpreter. */ MSize spadj; /* Stack adjustment for trace itself. */ BCLine lineno; /* Starting line number. */ const char *filename; /* Starting file name. */ size_t objsize; /* Final size of ELF object. */ GDBJITobj obj; /* In-memory ELF object. */ } GDBJITctx; /* Add a zero-terminated string. */ static uint32_t gdbjit_strz(GDBJITctx *ctx, const char *str) { uint8_t *p = ctx->p; uint32_t ofs = (uint32_t)(p - ctx->startp); do { *p++ = (uint8_t)*str; } while (*str++); ctx->p = p; return ofs; } /* Append a decimal number. */ static void gdbjit_catnum(GDBJITctx *ctx, uint32_t n) { if (n >= 10) { uint32_t m = n / 10; n = n % 10; gdbjit_catnum(ctx, m); } *ctx->p++ = '0' + n; } /* Add a ULEB128 value. */ static void gdbjit_uleb128(GDBJITctx *ctx, uint32_t v) { uint8_t *p = ctx->p; for (; v >= 0x80; v >>= 7) *p++ = (uint8_t)((v & 0x7f) | 0x80); *p++ = (uint8_t)v; ctx->p = p; } /* Add a SLEB128 value. */ static void gdbjit_sleb128(GDBJITctx *ctx, int32_t v) { uint8_t *p = ctx->p; for (; (uint32_t)(v+0x40) >= 0x80; v >>= 7) *p++ = (uint8_t)((v & 0x7f) | 0x80); *p++ = (uint8_t)(v & 0x7f); ctx->p = p; } /* Shortcuts to generate DWARF structures. */ #define DB(x) (*p++ = (x)) #define DI8(x) (*(int8_t *)p = (x), p++) #define DU16(x) (*(uint16_t *)p = (x), p += 2) #define DU32(x) (*(uint32_t *)p = (x), p += 4) #define DADDR(x) (*(uintptr_t *)p = (x), p += sizeof(uintptr_t)) #define DUV(x) (ctx->p = p, gdbjit_uleb128(ctx, (x)), p = ctx->p) #define DSV(x) (ctx->p = p, gdbjit_sleb128(ctx, (x)), p = ctx->p) #define DSTR(str) (ctx->p = p, gdbjit_strz(ctx, (str)), p = ctx->p) #define DALIGNNOP(s) while ((uintptr_t)p & ((s)-1)) *p++ = DW_CFA_nop #define DSECT(name, stmt) \ { uint32_t *szp_##name = (uint32_t *)p; p += 4; stmt \ *szp_##name = (uint32_t)((p-(uint8_t *)szp_##name)-4); } \ /* Initialize ELF section headers. */ static void LJ_FASTCALL gdbjit_secthdr(GDBJITctx *ctx) { ELFsectheader *sect; *ctx->p++ = '\0'; /* Empty string at start of string table. */ #define SECTDEF(id, tp, al) \ sect = &ctx->obj.sect[GDBJIT_SECT_##id]; \ sect->name = gdbjit_strz(ctx, "." #id); \ sect->type = ELFSECT_TYPE_##tp; \ sect->align = (al) SECTDEF(text, NOBITS, 16); sect->flags = ELFSECT_FLAGS_ALLOC|ELFSECT_FLAGS_EXEC; sect->addr = ctx->mcaddr; sect->ofs = 0; sect->size = ctx->szmcode; SECTDEF(eh_frame, PROGBITS, sizeof(uintptr_t)); sect->flags = ELFSECT_FLAGS_ALLOC; SECTDEF(shstrtab, STRTAB, 1); SECTDEF(strtab, STRTAB, 1); SECTDEF(symtab, SYMTAB, sizeof(uintptr_t)); sect->ofs = offsetof(GDBJITobj, sym); sect->size = sizeof(ctx->obj.sym); sect->link = GDBJIT_SECT_strtab; sect->entsize = sizeof(ELFsymbol); sect->info = GDBJIT_SYM_FUNC; SECTDEF(debug_info, PROGBITS, 1); SECTDEF(debug_abbrev, PROGBITS, 1); SECTDEF(debug_line, PROGBITS, 1); #undef SECTDEF } /* Initialize symbol table. */ static void LJ_FASTCALL gdbjit_symtab(GDBJITctx *ctx) { ELFsymbol *sym; *ctx->p++ = '\0'; /* Empty string at start of string table. */ sym = &ctx->obj.sym[GDBJIT_SYM_FILE]; sym->name = gdbjit_strz(ctx, "JIT mcode"); sym->sectidx = ELFSECT_IDX_ABS; sym->info = ELFSYM_TYPE_FILE|ELFSYM_BIND_LOCAL; sym = &ctx->obj.sym[GDBJIT_SYM_FUNC]; sym->name = gdbjit_strz(ctx, "TRACE_"); ctx->p--; gdbjit_catnum(ctx, ctx->T->traceno); *ctx->p++ = '\0'; sym->sectidx = GDBJIT_SECT_text; sym->value = 0; sym->size = ctx->szmcode; sym->info = ELFSYM_TYPE_FUNC|ELFSYM_BIND_GLOBAL; } /* Initialize .eh_frame section. */ static void LJ_FASTCALL gdbjit_ehframe(GDBJITctx *ctx) { uint8_t *p = ctx->p; uint8_t *framep = p; /* Emit DWARF EH CIE. */ DSECT(CIE, DU32(0); /* Offset to CIE itself. */ DB(DW_CIE_VERSION); DSTR("zR"); /* Augmentation. */ DUV(1); /* Code alignment factor. */ DSV(-(int32_t)sizeof(uintptr_t)); /* Data alignment factor. */ DB(DW_REG_RA); /* Return address register. */ DB(1); DB(DW_EH_PE_textrel|DW_EH_PE_udata4); /* Augmentation data. */ DB(DW_CFA_def_cfa); DUV(DW_REG_SP); DUV(sizeof(uintptr_t)); #if LJ_TARGET_PPC DB(DW_CFA_offset_extended_sf); DB(DW_REG_RA); DSV(-1); #else DB(DW_CFA_offset|DW_REG_RA); DUV(1); #endif DALIGNNOP(sizeof(uintptr_t)); ) /* Emit DWARF EH FDE. */ DSECT(FDE, DU32((uint32_t)(p-framep)); /* Offset to CIE. */ DU32(0); /* Machine code offset relative to .text. */ DU32(ctx->szmcode); /* Machine code length. */ DB(0); /* Augmentation data. */ /* Registers saved in CFRAME. */ #if LJ_TARGET_X86 DB(DW_CFA_offset|DW_REG_BP); DUV(2); DB(DW_CFA_offset|DW_REG_DI); DUV(3); DB(DW_CFA_offset|DW_REG_SI); DUV(4); DB(DW_CFA_offset|DW_REG_BX); DUV(5); #elif LJ_TARGET_X64 DB(DW_CFA_offset|DW_REG_BP); DUV(2); DB(DW_CFA_offset|DW_REG_BX); DUV(3); DB(DW_CFA_offset|DW_REG_15); DUV(4); DB(DW_CFA_offset|DW_REG_14); DUV(5); /* Extra registers saved for JIT-compiled code. */ DB(DW_CFA_offset|DW_REG_13); DUV(9); DB(DW_CFA_offset|DW_REG_12); DUV(10); #elif LJ_TARGET_ARM { int i; for (i = 11; i >= 4; i--) { DB(DW_CFA_offset|i); DUV(2+(11-i)); } } #elif LJ_TARGET_PPC { int i; DB(DW_CFA_offset_extended); DB(DW_REG_CR); DUV(55); for (i = 14; i <= 31; i++) { DB(DW_CFA_offset|i); DUV(37+(31-i)); DB(DW_CFA_offset|32|i); DUV(2+2*(31-i)); } } #elif LJ_TARGET_MIPS { int i; DB(DW_CFA_offset|30); DUV(2); for (i = 23; i >= 16; i--) { DB(DW_CFA_offset|i); DUV(26-i); } for (i = 30; i >= 20; i -= 2) { DB(DW_CFA_offset|32|i); DUV(42-i); } } #else #error "Unsupported target architecture" #endif if (ctx->spadjp != ctx->spadj) { /* Parent/interpreter stack frame size. */ DB(DW_CFA_def_cfa_offset); DUV(ctx->spadjp); DB(DW_CFA_advance_loc|1); /* Only an approximation. */ } DB(DW_CFA_def_cfa_offset); DUV(ctx->spadj); /* Trace stack frame size. */ DALIGNNOP(sizeof(uintptr_t)); ) ctx->p = p; } /* Initialize .debug_info section. */ static void LJ_FASTCALL gdbjit_debuginfo(GDBJITctx *ctx) { uint8_t *p = ctx->p; DSECT(info, DU16(2); /* DWARF version. */ DU32(0); /* Abbrev offset. */ DB(sizeof(uintptr_t)); /* Pointer size. */ DUV(1); /* Abbrev #1: DW_TAG_compile_unit. */ DSTR(ctx->filename); /* DW_AT_name. */ DADDR(ctx->mcaddr); /* DW_AT_low_pc. */ DADDR(ctx->mcaddr + ctx->szmcode); /* DW_AT_high_pc. */ DU32(0); /* DW_AT_stmt_list. */ ) ctx->p = p; } /* Initialize .debug_abbrev section. */ static void LJ_FASTCALL gdbjit_debugabbrev(GDBJITctx *ctx) { uint8_t *p = ctx->p; /* Abbrev #1: DW_TAG_compile_unit. */ DUV(1); DUV(DW_TAG_compile_unit); DB(DW_children_no); DUV(DW_AT_name); DUV(DW_FORM_string); DUV(DW_AT_low_pc); DUV(DW_FORM_addr); DUV(DW_AT_high_pc); DUV(DW_FORM_addr); DUV(DW_AT_stmt_list); DUV(DW_FORM_data4); DB(0); DB(0); ctx->p = p; } #define DLNE(op, s) (DB(DW_LNS_extended_op), DUV(1+(s)), DB((op))) /* Initialize .debug_line section. */ static void LJ_FASTCALL gdbjit_debugline(GDBJITctx *ctx) { uint8_t *p = ctx->p; DSECT(line, DU16(2); /* DWARF version. */ DSECT(header, DB(1); /* Minimum instruction length. */ DB(1); /* is_stmt. */ DI8(0); /* Line base for special opcodes. */ DB(2); /* Line range for special opcodes. */ DB(3+1); /* Opcode base at DW_LNS_advance_line+1. */ DB(0); DB(1); DB(1); /* Standard opcode lengths. */ /* Directory table. */ DB(0); /* File name table. */ DSTR(ctx->filename); DUV(0); DUV(0); DUV(0); DB(0); ) DLNE(DW_LNE_set_address, sizeof(uintptr_t)); DADDR(ctx->mcaddr); if (ctx->lineno) { DB(DW_LNS_advance_line); DSV(ctx->lineno-1); } DB(DW_LNS_copy); DB(DW_LNS_advance_pc); DUV(ctx->szmcode); DLNE(DW_LNE_end_sequence, 0); ) ctx->p = p; } #undef DLNE /* Undef shortcuts. */ #undef DB #undef DI8 #undef DU16 #undef DU32 #undef DADDR #undef DUV #undef DSV #undef DSTR #undef DALIGNNOP #undef DSECT /* Type of a section initializer callback. */ typedef void (LJ_FASTCALL *GDBJITinitf)(GDBJITctx *ctx); /* Call section initializer and set the section offset and size. */ static void gdbjit_initsect(GDBJITctx *ctx, int sect, GDBJITinitf initf) { ctx->startp = ctx->p; ctx->obj.sect[sect].ofs = (uintptr_t)((char *)ctx->p - (char *)&ctx->obj); initf(ctx); ctx->obj.sect[sect].size = (uintptr_t)(ctx->p - ctx->startp); } #define SECTALIGN(p, a) \ ((p) = (uint8_t *)(((uintptr_t)(p) + ((a)-1)) & ~(uintptr_t)((a)-1))) /* Build in-memory ELF object. */ static void gdbjit_buildobj(GDBJITctx *ctx) { GDBJITobj *obj = &ctx->obj; /* Fill in ELF header and clear structures. */ memcpy(&obj->hdr, &elfhdr_template, sizeof(ELFheader)); memset(&obj->sect, 0, sizeof(ELFsectheader)*GDBJIT_SECT__MAX); memset(&obj->sym, 0, sizeof(ELFsymbol)*GDBJIT_SYM__MAX); /* Initialize sections. */ ctx->p = obj->space; gdbjit_initsect(ctx, GDBJIT_SECT_shstrtab, gdbjit_secthdr); gdbjit_initsect(ctx, GDBJIT_SECT_strtab, gdbjit_symtab); gdbjit_initsect(ctx, GDBJIT_SECT_debug_info, gdbjit_debuginfo); gdbjit_initsect(ctx, GDBJIT_SECT_debug_abbrev, gdbjit_debugabbrev); gdbjit_initsect(ctx, GDBJIT_SECT_debug_line, gdbjit_debugline); SECTALIGN(ctx->p, sizeof(uintptr_t)); gdbjit_initsect(ctx, GDBJIT_SECT_eh_frame, gdbjit_ehframe); ctx->objsize = (size_t)((char *)ctx->p - (char *)obj); lua_assert(ctx->objsize < sizeof(GDBJITobj)); } #undef SECTALIGN /* -- Interface to GDB JIT API -------------------------------------------- */ /* Add new entry to GDB JIT symbol chain. */ static void gdbjit_newentry(lua_State *L, GDBJITctx *ctx) { /* Allocate memory for GDB JIT entry and ELF object. */ MSize sz = (MSize)(sizeof(GDBJITentryobj) - sizeof(GDBJITobj) + ctx->objsize); GDBJITentryobj *eo = lj_mem_newt(L, sz, GDBJITentryobj); memcpy(&eo->obj, &ctx->obj, ctx->objsize); /* Copy ELF object. */ eo->sz = sz; ctx->T->gdbjit_entry = (void *)eo; /* Link new entry to chain and register it. */ eo->entry.prev_entry = NULL; eo->entry.next_entry = __jit_debug_descriptor.first_entry; if (eo->entry.next_entry) eo->entry.next_entry->prev_entry = &eo->entry; eo->entry.symfile_addr = (const char *)&eo->obj; eo->entry.symfile_size = ctx->objsize; __jit_debug_descriptor.first_entry = &eo->entry; __jit_debug_descriptor.relevant_entry = &eo->entry; __jit_debug_descriptor.action_flag = GDBJIT_REGISTER; __jit_debug_register_code(); } /* Add debug info for newly compiled trace and notify GDB. */ void lj_gdbjit_addtrace(jit_State *J, GCtrace *T) { GDBJITctx ctx; GCproto *pt = &gcref(T->startpt)->pt; TraceNo parent = T->ir[REF_BASE].op1; const BCIns *startpc = mref(T->startpc, const BCIns); ctx.T = T; ctx.mcaddr = (uintptr_t)T->mcode; ctx.szmcode = T->szmcode; ctx.spadjp = CFRAME_SIZE_JIT + (MSize)(parent ? traceref(J, parent)->spadjust : 0); ctx.spadj = CFRAME_SIZE_JIT + T->spadjust; lua_assert(startpc >= proto_bc(pt) && startpc < proto_bc(pt) + pt->sizebc); ctx.lineno = lj_debug_line(pt, proto_bcpos(pt, startpc)); ctx.filename = proto_chunknamestr(pt); if (*ctx.filename == '@' || *ctx.filename == '=') ctx.filename++; else ctx.filename = "(string)"; gdbjit_buildobj(&ctx); gdbjit_newentry(J->L, &ctx); } /* Delete debug info for trace and notify GDB. */ void lj_gdbjit_deltrace(jit_State *J, GCtrace *T) { GDBJITentryobj *eo = (GDBJITentryobj *)T->gdbjit_entry; if (eo) { if (eo->entry.prev_entry) eo->entry.prev_entry->next_entry = eo->entry.next_entry; else __jit_debug_descriptor.first_entry = eo->entry.next_entry; if (eo->entry.next_entry) eo->entry.next_entry->prev_entry = eo->entry.prev_entry; __jit_debug_descriptor.relevant_entry = &eo->entry; __jit_debug_descriptor.action_flag = GDBJIT_UNREGISTER; __jit_debug_register_code(); lj_mem_free(J2G(J), eo, eo->sz); } } #endif #endif