1
0
Fork 0
Aegisub/subprojects/luajit/src/lj_asm.c

1921 lines
56 KiB
C

/*
** IR assembler (SSA IR -> machine code).
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
*/
#define lj_asm_c
#define LUA_CORE
#include "lj_obj.h"
#if LJ_HASJIT
#include "lj_gc.h"
#include "lj_str.h"
#include "lj_tab.h"
#include "lj_frame.h"
#if LJ_HASFFI
#include "lj_ctype.h"
#endif
#include "lj_ir.h"
#include "lj_jit.h"
#include "lj_ircall.h"
#include "lj_iropt.h"
#include "lj_mcode.h"
#include "lj_iropt.h"
#include "lj_trace.h"
#include "lj_snap.h"
#include "lj_asm.h"
#include "lj_dispatch.h"
#include "lj_vm.h"
#include "lj_target.h"
#ifdef LUA_USE_ASSERT
#include <stdio.h>
#endif
/* -- Assembler state and common macros ----------------------------------- */
/* Assembler state. */
typedef struct ASMState {
RegCost cost[RID_MAX]; /* Reference and blended allocation cost for regs. */
MCode *mcp; /* Current MCode pointer (grows down). */
MCode *mclim; /* Lower limit for MCode memory + red zone. */
#ifdef LUA_USE_ASSERT
MCode *mcp_prev; /* Red zone overflow check. */
#endif
IRIns *ir; /* Copy of pointer to IR instructions/constants. */
jit_State *J; /* JIT compiler state. */
#if LJ_TARGET_X86ORX64
x86ModRM mrm; /* Fused x86 address operand. */
#endif
RegSet freeset; /* Set of free registers. */
RegSet modset; /* Set of registers modified inside the loop. */
RegSet weakset; /* Set of weakly referenced registers. */
RegSet phiset; /* Set of PHI registers. */
uint32_t flags; /* Copy of JIT compiler flags. */
int loopinv; /* Loop branch inversion (0:no, 1:yes, 2:yes+CC_P). */
int32_t evenspill; /* Next even spill slot. */
int32_t oddspill; /* Next odd spill slot (or 0). */
IRRef curins; /* Reference of current instruction. */
IRRef stopins; /* Stop assembly before hitting this instruction. */
IRRef orignins; /* Original T->nins. */
IRRef snapref; /* Current snapshot is active after this reference. */
IRRef snaprename; /* Rename highwater mark for snapshot check. */
SnapNo snapno; /* Current snapshot number. */
SnapNo loopsnapno; /* Loop snapshot number. */
IRRef fuseref; /* Fusion limit (loopref, 0 or FUSE_DISABLED). */
IRRef sectref; /* Section base reference (loopref or 0). */
IRRef loopref; /* Reference of LOOP instruction (or 0). */
BCReg topslot; /* Number of slots for stack check (unless 0). */
int32_t gcsteps; /* Accumulated number of GC steps (per section). */
GCtrace *T; /* Trace to assemble. */
GCtrace *parent; /* Parent trace (or NULL). */
MCode *mcbot; /* Bottom of reserved MCode. */
MCode *mctop; /* Top of generated MCode. */
MCode *mcloop; /* Pointer to loop MCode (or NULL). */
MCode *invmcp; /* Points to invertible loop branch (or NULL). */
MCode *flagmcp; /* Pending opportunity to merge flag setting ins. */
MCode *realign; /* Realign loop if not NULL. */
#ifdef RID_NUM_KREF
int32_t krefk[RID_NUM_KREF];
#endif
IRRef1 phireg[RID_MAX]; /* PHI register references. */
uint16_t parentmap[LJ_MAX_JSLOTS]; /* Parent instruction to RegSP map. */
} ASMState;
#define IR(ref) (&as->ir[(ref)])
#define ASMREF_TMP1 REF_TRUE /* Temp. register. */
#define ASMREF_TMP2 REF_FALSE /* Temp. register. */
#define ASMREF_L REF_NIL /* Stores register for L. */
/* Check for variant to invariant references. */
#define iscrossref(as, ref) ((ref) < as->sectref)
/* Inhibit memory op fusion from variant to invariant references. */
#define FUSE_DISABLED (~(IRRef)0)
#define mayfuse(as, ref) ((ref) > as->fuseref)
#define neverfuse(as) (as->fuseref == FUSE_DISABLED)
#define canfuse(as, ir) (!neverfuse(as) && !irt_isphi((ir)->t))
#define opisfusableload(o) \
((o) == IR_ALOAD || (o) == IR_HLOAD || (o) == IR_ULOAD || \
(o) == IR_FLOAD || (o) == IR_XLOAD || (o) == IR_SLOAD || (o) == IR_VLOAD)
/* Sparse limit checks using a red zone before the actual limit. */
#define MCLIM_REDZONE 64
static LJ_NORET LJ_NOINLINE void asm_mclimit(ASMState *as)
{
lj_mcode_limiterr(as->J, (size_t)(as->mctop - as->mcp + 4*MCLIM_REDZONE));
}
static LJ_AINLINE void checkmclim(ASMState *as)
{
#ifdef LUA_USE_ASSERT
if (as->mcp + MCLIM_REDZONE < as->mcp_prev) {
IRIns *ir = IR(as->curins+1);
fprintf(stderr, "RED ZONE OVERFLOW: %p IR %04d %02d %04d %04d\n", as->mcp,
as->curins+1-REF_BIAS, ir->o, ir->op1-REF_BIAS, ir->op2-REF_BIAS);
lua_assert(0);
}
#endif
if (LJ_UNLIKELY(as->mcp < as->mclim)) asm_mclimit(as);
#ifdef LUA_USE_ASSERT
as->mcp_prev = as->mcp;
#endif
}
#ifdef RID_NUM_KREF
#define ra_iskref(ref) ((ref) < RID_NUM_KREF)
#define ra_krefreg(ref) ((Reg)(RID_MIN_KREF + (Reg)(ref)))
#define ra_krefk(as, ref) (as->krefk[(ref)])
static LJ_AINLINE void ra_setkref(ASMState *as, Reg r, int32_t k)
{
IRRef ref = (IRRef)(r - RID_MIN_KREF);
as->krefk[ref] = k;
as->cost[r] = REGCOST(ref, ref);
}
#else
#define ra_iskref(ref) 0
#define ra_krefreg(ref) RID_MIN_GPR
#define ra_krefk(as, ref) 0
#endif
/* Arch-specific field offsets. */
static const uint8_t field_ofs[IRFL__MAX+1] = {
#define FLOFS(name, ofs) (uint8_t)(ofs),
IRFLDEF(FLOFS)
#undef FLOFS
0
};
/* -- Target-specific instruction emitter --------------------------------- */
#if LJ_TARGET_X86ORX64
#include "lj_emit_x86.h"
#elif LJ_TARGET_ARM
#include "lj_emit_arm.h"
#elif LJ_TARGET_PPC
#include "lj_emit_ppc.h"
#elif LJ_TARGET_MIPS
#include "lj_emit_mips.h"
#else
#error "Missing instruction emitter for target CPU"
#endif
/* -- Register allocator debugging ---------------------------------------- */
/* #define LUAJIT_DEBUG_RA */
#ifdef LUAJIT_DEBUG_RA
#include <stdio.h>
#include <stdarg.h>
#define RIDNAME(name) #name,
static const char *const ra_regname[] = {
GPRDEF(RIDNAME)
FPRDEF(RIDNAME)
VRIDDEF(RIDNAME)
NULL
};
#undef RIDNAME
static char ra_dbg_buf[65536];
static char *ra_dbg_p;
static char *ra_dbg_merge;
static MCode *ra_dbg_mcp;
static void ra_dstart(void)
{
ra_dbg_p = ra_dbg_buf;
ra_dbg_merge = NULL;
ra_dbg_mcp = NULL;
}
static void ra_dflush(void)
{
fwrite(ra_dbg_buf, 1, (size_t)(ra_dbg_p-ra_dbg_buf), stdout);
ra_dstart();
}
static void ra_dprintf(ASMState *as, const char *fmt, ...)
{
char *p;
va_list argp;
va_start(argp, fmt);
p = ra_dbg_mcp == as->mcp ? ra_dbg_merge : ra_dbg_p;
ra_dbg_mcp = NULL;
p += sprintf(p, "%08x \e[36m%04d ", (uintptr_t)as->mcp, as->curins-REF_BIAS);
for (;;) {
const char *e = strchr(fmt, '$');
if (e == NULL) break;
memcpy(p, fmt, (size_t)(e-fmt));
p += e-fmt;
if (e[1] == 'r') {
Reg r = va_arg(argp, Reg) & RID_MASK;
if (r <= RID_MAX) {
const char *q;
for (q = ra_regname[r]; *q; q++)
*p++ = *q >= 'A' && *q <= 'Z' ? *q + 0x20 : *q;
} else {
*p++ = '?';
lua_assert(0);
}
} else if (e[1] == 'f' || e[1] == 'i') {
IRRef ref;
if (e[1] == 'f')
ref = va_arg(argp, IRRef);
else
ref = va_arg(argp, IRIns *) - as->ir;
if (ref >= REF_BIAS)
p += sprintf(p, "%04d", ref - REF_BIAS);
else
p += sprintf(p, "K%03d", REF_BIAS - ref);
} else if (e[1] == 's') {
uint32_t slot = va_arg(argp, uint32_t);
p += sprintf(p, "[sp+0x%x]", sps_scale(slot));
} else if (e[1] == 'x') {
p += sprintf(p, "%08x", va_arg(argp, int32_t));
} else {
lua_assert(0);
}
fmt = e+2;
}
va_end(argp);
while (*fmt)
*p++ = *fmt++;
*p++ = '\e'; *p++ = '['; *p++ = 'm'; *p++ = '\n';
if (p > ra_dbg_buf+sizeof(ra_dbg_buf)-256) {
fwrite(ra_dbg_buf, 1, (size_t)(p-ra_dbg_buf), stdout);
p = ra_dbg_buf;
}
ra_dbg_p = p;
}
#define RA_DBG_START() ra_dstart()
#define RA_DBG_FLUSH() ra_dflush()
#define RA_DBG_REF() \
do { char *_p = ra_dbg_p; ra_dprintf(as, ""); \
ra_dbg_merge = _p; ra_dbg_mcp = as->mcp; } while (0)
#define RA_DBGX(x) ra_dprintf x
#else
#define RA_DBG_START() ((void)0)
#define RA_DBG_FLUSH() ((void)0)
#define RA_DBG_REF() ((void)0)
#define RA_DBGX(x) ((void)0)
#endif
/* -- Register allocator -------------------------------------------------- */
#define ra_free(as, r) rset_set(as->freeset, (r))
#define ra_modified(as, r) rset_set(as->modset, (r))
#define ra_weak(as, r) rset_set(as->weakset, (r))
#define ra_noweak(as, r) rset_clear(as->weakset, (r))
#define ra_used(ir) (ra_hasreg((ir)->r) || ra_hasspill((ir)->s))
/* Setup register allocator. */
static void ra_setup(ASMState *as)
{
Reg r;
/* Initially all regs (except the stack pointer) are free for use. */
as->freeset = RSET_INIT;
as->modset = RSET_EMPTY;
as->weakset = RSET_EMPTY;
as->phiset = RSET_EMPTY;
memset(as->phireg, 0, sizeof(as->phireg));
for (r = RID_MIN_GPR; r < RID_MAX; r++)
as->cost[r] = REGCOST(~0u, 0u);
}
/* Rematerialize constants. */
static Reg ra_rematk(ASMState *as, IRRef ref)
{
IRIns *ir;
Reg r;
if (ra_iskref(ref)) {
r = ra_krefreg(ref);
lua_assert(!rset_test(as->freeset, r));
ra_free(as, r);
ra_modified(as, r);
emit_loadi(as, r, ra_krefk(as, ref));
return r;
}
ir = IR(ref);
r = ir->r;
lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s));
ra_free(as, r);
ra_modified(as, r);
ir->r = RID_INIT; /* Do not keep any hint. */
RA_DBGX((as, "remat $i $r", ir, r));
#if !LJ_SOFTFP
if (ir->o == IR_KNUM) {
emit_loadn(as, r, ir_knum(ir));
} else
#endif
if (emit_canremat(REF_BASE) && ir->o == IR_BASE) {
ra_sethint(ir->r, RID_BASE); /* Restore BASE register hint. */
emit_getgl(as, r, jit_base);
} else if (emit_canremat(ASMREF_L) && ir->o == IR_KPRI) {
lua_assert(irt_isnil(ir->t)); /* REF_NIL stores ASMREF_L register. */
emit_getgl(as, r, jit_L);
#if LJ_64
} else if (ir->o == IR_KINT64) {
emit_loadu64(as, r, ir_kint64(ir)->u64);
#endif
} else {
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL);
emit_loadi(as, r, ir->i);
}
return r;
}
/* Force a spill. Allocate a new spill slot if needed. */
static int32_t ra_spill(ASMState *as, IRIns *ir)
{
int32_t slot = ir->s;
lua_assert(ir >= as->ir + REF_TRUE);
if (!ra_hasspill(slot)) {
if (irt_is64(ir->t)) {
slot = as->evenspill;
as->evenspill += 2;
} else if (as->oddspill) {
slot = as->oddspill;
as->oddspill = 0;
} else {
slot = as->evenspill;
as->oddspill = slot+1;
as->evenspill += 2;
}
if (as->evenspill > 256)
lj_trace_err(as->J, LJ_TRERR_SPILLOV);
ir->s = (uint8_t)slot;
}
return sps_scale(slot);
}
/* Release the temporarily allocated register in ASMREF_TMP1/ASMREF_TMP2. */
static Reg ra_releasetmp(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
Reg r = ir->r;
lua_assert(ra_hasreg(r) && !ra_hasspill(ir->s));
ra_free(as, r);
ra_modified(as, r);
ir->r = RID_INIT;
return r;
}
/* Restore a register (marked as free). Rematerialize or force a spill. */
static Reg ra_restore(ASMState *as, IRRef ref)
{
if (emit_canremat(ref)) {
return ra_rematk(as, ref);
} else {
IRIns *ir = IR(ref);
int32_t ofs = ra_spill(as, ir); /* Force a spill slot. */
Reg r = ir->r;
lua_assert(ra_hasreg(r));
ra_sethint(ir->r, r); /* Keep hint. */
ra_free(as, r);
if (!rset_test(as->weakset, r)) { /* Only restore non-weak references. */
ra_modified(as, r);
RA_DBGX((as, "restore $i $r", ir, r));
emit_spload(as, ir, r, ofs);
}
return r;
}
}
/* Save a register to a spill slot. */
static void ra_save(ASMState *as, IRIns *ir, Reg r)
{
RA_DBGX((as, "save $i $r", ir, r));
emit_spstore(as, ir, r, sps_scale(ir->s));
}
#define MINCOST(name) \
if (rset_test(RSET_ALL, RID_##name) && \
LJ_LIKELY(allow&RID2RSET(RID_##name)) && as->cost[RID_##name] < cost) \
cost = as->cost[RID_##name];
/* Evict the register with the lowest cost, forcing a restore. */
static Reg ra_evict(ASMState *as, RegSet allow)
{
IRRef ref;
RegCost cost = ~(RegCost)0;
lua_assert(allow != RSET_EMPTY);
if (RID_NUM_FPR == 0 || allow < RID2RSET(RID_MAX_GPR)) {
GPRDEF(MINCOST)
} else {
FPRDEF(MINCOST)
}
ref = regcost_ref(cost);
lua_assert(ra_iskref(ref) || (ref >= as->T->nk && ref < as->T->nins));
/* Preferably pick any weak ref instead of a non-weak, non-const ref. */
if (!irref_isk(ref) && (as->weakset & allow)) {
IRIns *ir = IR(ref);
if (!rset_test(as->weakset, ir->r))
ref = regcost_ref(as->cost[rset_pickbot((as->weakset & allow))]);
}
return ra_restore(as, ref);
}
/* Pick any register (marked as free). Evict on-demand. */
static Reg ra_pick(ASMState *as, RegSet allow)
{
RegSet pick = as->freeset & allow;
if (!pick)
return ra_evict(as, allow);
else
return rset_picktop(pick);
}
/* Get a scratch register (marked as free). */
static Reg ra_scratch(ASMState *as, RegSet allow)
{
Reg r = ra_pick(as, allow);
ra_modified(as, r);
RA_DBGX((as, "scratch $r", r));
return r;
}
/* Evict all registers from a set (if not free). */
static void ra_evictset(ASMState *as, RegSet drop)
{
RegSet work;
as->modset |= drop;
#if !LJ_SOFTFP
work = (drop & ~as->freeset) & RSET_FPR;
while (work) {
Reg r = rset_pickbot(work);
ra_restore(as, regcost_ref(as->cost[r]));
rset_clear(work, r);
checkmclim(as);
}
#endif
work = (drop & ~as->freeset);
while (work) {
Reg r = rset_pickbot(work);
ra_restore(as, regcost_ref(as->cost[r]));
rset_clear(work, r);
checkmclim(as);
}
}
/* Evict (rematerialize) all registers allocated to constants. */
static void ra_evictk(ASMState *as)
{
RegSet work;
#if !LJ_SOFTFP
work = ~as->freeset & RSET_FPR;
while (work) {
Reg r = rset_pickbot(work);
IRRef ref = regcost_ref(as->cost[r]);
if (emit_canremat(ref) && irref_isk(ref)) {
ra_rematk(as, ref);
checkmclim(as);
}
rset_clear(work, r);
}
#endif
work = ~as->freeset & RSET_GPR;
while (work) {
Reg r = rset_pickbot(work);
IRRef ref = regcost_ref(as->cost[r]);
if (emit_canremat(ref) && irref_isk(ref)) {
ra_rematk(as, ref);
checkmclim(as);
}
rset_clear(work, r);
}
}
#ifdef RID_NUM_KREF
/* Allocate a register for a constant. */
static Reg ra_allock(ASMState *as, int32_t k, RegSet allow)
{
/* First try to find a register which already holds the same constant. */
RegSet pick, work = ~as->freeset & RSET_GPR;
Reg r;
while (work) {
IRRef ref;
r = rset_pickbot(work);
ref = regcost_ref(as->cost[r]);
if (ref < ASMREF_L &&
k == (ra_iskref(ref) ? ra_krefk(as, ref) : IR(ref)->i))
return r;
rset_clear(work, r);
}
pick = as->freeset & allow;
if (pick) {
/* Constants should preferably get unmodified registers. */
if ((pick & ~as->modset))
pick &= ~as->modset;
r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */
} else {
r = ra_evict(as, allow);
}
RA_DBGX((as, "allock $x $r", k, r));
ra_setkref(as, r, k);
rset_clear(as->freeset, r);
ra_noweak(as, r);
return r;
}
/* Allocate a specific register for a constant. */
static void ra_allockreg(ASMState *as, int32_t k, Reg r)
{
Reg kr = ra_allock(as, k, RID2RSET(r));
if (kr != r) {
IRIns irdummy;
irdummy.t.irt = IRT_INT;
ra_scratch(as, RID2RSET(r));
emit_movrr(as, &irdummy, r, kr);
}
}
#else
#define ra_allockreg(as, k, r) emit_loadi(as, (r), (k))
#endif
/* Allocate a register for ref from the allowed set of registers.
** Note: this function assumes the ref does NOT have a register yet!
** Picks an optimal register, sets the cost and marks the register as non-free.
*/
static Reg ra_allocref(ASMState *as, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
RegSet pick = as->freeset & allow;
Reg r;
lua_assert(ra_noreg(ir->r));
if (pick) {
/* First check register hint from propagation or PHI. */
if (ra_hashint(ir->r)) {
r = ra_gethint(ir->r);
if (rset_test(pick, r)) /* Use hint register if possible. */
goto found;
/* Rematerialization is cheaper than missing a hint. */
if (rset_test(allow, r) && emit_canremat(regcost_ref(as->cost[r]))) {
ra_rematk(as, regcost_ref(as->cost[r]));
goto found;
}
RA_DBGX((as, "hintmiss $f $r", ref, r));
}
/* Invariants should preferably get unmodified registers. */
if (ref < as->loopref && !irt_isphi(ir->t)) {
if ((pick & ~as->modset))
pick &= ~as->modset;
r = rset_pickbot(pick); /* Reduce conflicts with inverse allocation. */
} else {
/* We've got plenty of regs, so get callee-save regs if possible. */
if (RID_NUM_GPR > 8 && (pick & ~RSET_SCRATCH))
pick &= ~RSET_SCRATCH;
r = rset_picktop(pick);
}
} else {
r = ra_evict(as, allow);
}
found:
RA_DBGX((as, "alloc $f $r", ref, r));
ir->r = (uint8_t)r;
rset_clear(as->freeset, r);
ra_noweak(as, r);
as->cost[r] = REGCOST_REF_T(ref, irt_t(ir->t));
return r;
}
/* Allocate a register on-demand. */
static Reg ra_alloc1(ASMState *as, IRRef ref, RegSet allow)
{
Reg r = IR(ref)->r;
/* Note: allow is ignored if the register is already allocated. */
if (ra_noreg(r)) r = ra_allocref(as, ref, allow);
ra_noweak(as, r);
return r;
}
/* Rename register allocation and emit move. */
static void ra_rename(ASMState *as, Reg down, Reg up)
{
IRRef ren, ref = regcost_ref(as->cost[up] = as->cost[down]);
IRIns *ir = IR(ref);
ir->r = (uint8_t)up;
as->cost[down] = 0;
lua_assert((down < RID_MAX_GPR) == (up < RID_MAX_GPR));
lua_assert(!rset_test(as->freeset, down) && rset_test(as->freeset, up));
ra_free(as, down); /* 'down' is free ... */
ra_modified(as, down);
rset_clear(as->freeset, up); /* ... and 'up' is now allocated. */
ra_noweak(as, up);
RA_DBGX((as, "rename $f $r $r", regcost_ref(as->cost[up]), down, up));
emit_movrr(as, ir, down, up); /* Backwards codegen needs inverse move. */
if (!ra_hasspill(IR(ref)->s)) { /* Add the rename to the IR. */
lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), ref, as->snapno);
ren = tref_ref(lj_ir_emit(as->J));
as->ir = as->T->ir; /* The IR may have been reallocated. */
IR(ren)->r = (uint8_t)down;
IR(ren)->s = SPS_NONE;
}
}
/* Pick a destination register (marked as free).
** Caveat: allow is ignored if there's already a destination register.
** Use ra_destreg() to get a specific register.
*/
static Reg ra_dest(ASMState *as, IRIns *ir, RegSet allow)
{
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
} else {
if (ra_hashint(dest) && rset_test((as->freeset&allow), ra_gethint(dest))) {
dest = ra_gethint(dest);
ra_modified(as, dest);
RA_DBGX((as, "dest $r", dest));
} else {
dest = ra_scratch(as, allow);
}
ir->r = dest;
}
if (LJ_UNLIKELY(ra_hasspill(ir->s))) ra_save(as, ir, dest);
return dest;
}
/* Force a specific destination register (marked as free). */
static void ra_destreg(ASMState *as, IRIns *ir, Reg r)
{
Reg dest = ra_dest(as, ir, RID2RSET(r));
if (dest != r) {
lua_assert(rset_test(as->freeset, r));
ra_modified(as, r);
emit_movrr(as, ir, dest, r);
}
}
#if LJ_TARGET_X86ORX64
/* Propagate dest register to left reference. Emit moves as needed.
** This is a required fixup step for all 2-operand machine instructions.
*/
static void ra_left(ASMState *as, Reg dest, IRRef lref)
{
IRIns *ir = IR(lref);
Reg left = ir->r;
if (ra_noreg(left)) {
if (irref_isk(lref)) {
if (ir->o == IR_KNUM) {
cTValue *tv = ir_knum(ir);
/* FP remat needs a load except for +0. Still better than eviction. */
if (tvispzero(tv) || !(as->freeset & RSET_FPR)) {
emit_loadn(as, dest, tv);
return;
}
#if LJ_64
} else if (ir->o == IR_KINT64) {
emit_loadu64(as, dest, ir_kint64(ir)->u64);
return;
#endif
} else {
lua_assert(ir->o == IR_KINT || ir->o == IR_KGC ||
ir->o == IR_KPTR || ir->o == IR_KKPTR || ir->o == IR_KNULL);
emit_loadi(as, dest, ir->i);
return;
}
}
if (!ra_hashint(left) && !iscrossref(as, lref))
ra_sethint(ir->r, dest); /* Propagate register hint. */
left = ra_allocref(as, lref, dest < RID_MAX_GPR ? RSET_GPR : RSET_FPR);
}
ra_noweak(as, left);
/* Move needed for true 3-operand instruction: y=a+b ==> y=a; y+=b. */
if (dest != left) {
/* Use register renaming if dest is the PHI reg. */
if (irt_isphi(ir->t) && as->phireg[dest] == lref) {
ra_modified(as, left);
ra_rename(as, left, dest);
} else {
emit_movrr(as, ir, dest, left);
}
}
}
#else
/* Similar to ra_left, except we override any hints. */
static void ra_leftov(ASMState *as, Reg dest, IRRef lref)
{
IRIns *ir = IR(lref);
Reg left = ir->r;
if (ra_noreg(left)) {
ra_sethint(ir->r, dest); /* Propagate register hint. */
left = ra_allocref(as, lref,
(LJ_SOFTFP || dest < RID_MAX_GPR) ? RSET_GPR : RSET_FPR);
}
ra_noweak(as, left);
if (dest != left) {
/* Use register renaming if dest is the PHI reg. */
if (irt_isphi(ir->t) && as->phireg[dest] == lref) {
ra_modified(as, left);
ra_rename(as, left, dest);
} else {
emit_movrr(as, ir, dest, left);
}
}
}
#endif
#if !LJ_64
/* Force a RID_RETLO/RID_RETHI destination register pair (marked as free). */
static void ra_destpair(ASMState *as, IRIns *ir)
{
Reg destlo = ir->r, desthi = (ir+1)->r;
/* First spill unrelated refs blocking the destination registers. */
if (!rset_test(as->freeset, RID_RETLO) &&
destlo != RID_RETLO && desthi != RID_RETLO)
ra_restore(as, regcost_ref(as->cost[RID_RETLO]));
if (!rset_test(as->freeset, RID_RETHI) &&
destlo != RID_RETHI && desthi != RID_RETHI)
ra_restore(as, regcost_ref(as->cost[RID_RETHI]));
/* Next free the destination registers (if any). */
if (ra_hasreg(destlo)) {
ra_free(as, destlo);
ra_modified(as, destlo);
} else {
destlo = RID_RETLO;
}
if (ra_hasreg(desthi)) {
ra_free(as, desthi);
ra_modified(as, desthi);
} else {
desthi = RID_RETHI;
}
/* Check for conflicts and shuffle the registers as needed. */
if (destlo == RID_RETHI) {
if (desthi == RID_RETLO) {
#if LJ_TARGET_X86
*--as->mcp = XI_XCHGa + RID_RETHI;
#else
emit_movrr(as, ir, RID_RETHI, RID_TMP);
emit_movrr(as, ir, RID_RETLO, RID_RETHI);
emit_movrr(as, ir, RID_TMP, RID_RETLO);
#endif
} else {
emit_movrr(as, ir, RID_RETHI, RID_RETLO);
if (desthi != RID_RETHI) emit_movrr(as, ir, desthi, RID_RETHI);
}
} else if (desthi == RID_RETLO) {
emit_movrr(as, ir, RID_RETLO, RID_RETHI);
if (destlo != RID_RETLO) emit_movrr(as, ir, destlo, RID_RETLO);
} else {
if (desthi != RID_RETHI) emit_movrr(as, ir, desthi, RID_RETHI);
if (destlo != RID_RETLO) emit_movrr(as, ir, destlo, RID_RETLO);
}
/* Restore spill slots (if any). */
if (ra_hasspill((ir+1)->s)) ra_save(as, ir+1, RID_RETHI);
if (ra_hasspill(ir->s)) ra_save(as, ir, RID_RETLO);
}
#endif
/* -- Snapshot handling --------- ----------------------------------------- */
/* Can we rematerialize a KNUM instead of forcing a spill? */
static int asm_snap_canremat(ASMState *as)
{
Reg r;
for (r = RID_MIN_FPR; r < RID_MAX_FPR; r++)
if (irref_isk(regcost_ref(as->cost[r])))
return 1;
return 0;
}
/* Check whether a sunk store corresponds to an allocation. */
static int asm_sunk_store(ASMState *as, IRIns *ira, IRIns *irs)
{
if (irs->s == 255) {
if (irs->o == IR_ASTORE || irs->o == IR_HSTORE ||
irs->o == IR_FSTORE || irs->o == IR_XSTORE) {
IRIns *irk = IR(irs->op1);
if (irk->o == IR_AREF || irk->o == IR_HREFK)
irk = IR(irk->op1);
return (IR(irk->op1) == ira);
}
return 0;
} else {
return (ira + irs->s == irs); /* Quick check. */
}
}
/* Allocate register or spill slot for a ref that escapes to a snapshot. */
static void asm_snap_alloc1(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (!irref_isk(ref) && (!(ra_used(ir) || ir->r == RID_SUNK))) {
if (ir->r == RID_SINK) {
ir->r = RID_SUNK;
#if LJ_HASFFI
if (ir->o == IR_CNEWI) { /* Allocate CNEWI value. */
asm_snap_alloc1(as, ir->op2);
if (LJ_32 && (ir+1)->o == IR_HIOP)
asm_snap_alloc1(as, (ir+1)->op2);
} else
#endif
{ /* Allocate stored values for TNEW, TDUP and CNEW. */
IRIns *irs;
lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || ir->o == IR_CNEW);
for (irs = IR(as->snapref-1); irs > ir; irs--)
if (irs->r == RID_SINK && asm_sunk_store(as, ir, irs)) {
lua_assert(irs->o == IR_ASTORE || irs->o == IR_HSTORE ||
irs->o == IR_FSTORE || irs->o == IR_XSTORE);
asm_snap_alloc1(as, irs->op2);
if (LJ_32 && (irs+1)->o == IR_HIOP)
asm_snap_alloc1(as, (irs+1)->op2);
}
}
} else {
RegSet allow;
if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT) {
IRIns *irc;
for (irc = IR(as->curins); irc > ir; irc--)
if ((irc->op1 == ref || irc->op2 == ref) &&
!(irc->r == RID_SINK || irc->r == RID_SUNK))
goto nosink; /* Don't sink conversion if result is used. */
asm_snap_alloc1(as, ir->op1);
return;
}
nosink:
allow = (!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR;
if ((as->freeset & allow) ||
(allow == RSET_FPR && asm_snap_canremat(as))) {
/* Get a weak register if we have a free one or can rematerialize. */
Reg r = ra_allocref(as, ref, allow); /* Allocate a register. */
if (!irt_isphi(ir->t))
ra_weak(as, r); /* But mark it as weakly referenced. */
checkmclim(as);
RA_DBGX((as, "snapreg $f $r", ref, ir->r));
} else {
ra_spill(as, ir); /* Otherwise force a spill slot. */
RA_DBGX((as, "snapspill $f $s", ref, ir->s));
}
}
}
}
/* Allocate refs escaping to a snapshot. */
static void asm_snap_alloc(ASMState *as)
{
SnapShot *snap = &as->T->snap[as->snapno];
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
IRRef ref = snap_ref(sn);
if (!irref_isk(ref)) {
asm_snap_alloc1(as, ref);
if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM)) {
lua_assert(irt_type(IR(ref+1)->t) == IRT_SOFTFP);
asm_snap_alloc1(as, ref+1);
}
}
}
}
/* All guards for a snapshot use the same exitno. This is currently the
** same as the snapshot number. Since the exact origin of the exit cannot
** be determined, all guards for the same snapshot must exit with the same
** RegSP mapping.
** A renamed ref which has been used in a prior guard for the same snapshot
** would cause an inconsistency. The easy way out is to force a spill slot.
*/
static int asm_snap_checkrename(ASMState *as, IRRef ren)
{
SnapShot *snap = &as->T->snap[as->snapno];
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n, nent = snap->nent;
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
IRRef ref = snap_ref(sn);
if (ref == ren || (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && ++ref == ren)) {
IRIns *ir = IR(ref);
ra_spill(as, ir); /* Register renamed, so force a spill slot. */
RA_DBGX((as, "snaprensp $f $s", ref, ir->s));
return 1; /* Found. */
}
}
return 0; /* Not found. */
}
/* Prepare snapshot for next guard instruction. */
static void asm_snap_prep(ASMState *as)
{
if (as->curins < as->snapref) {
do {
if (as->snapno == 0) return; /* Called by sunk stores before snap #0. */
as->snapno--;
as->snapref = as->T->snap[as->snapno].ref;
} while (as->curins < as->snapref);
asm_snap_alloc(as);
as->snaprename = as->T->nins;
} else {
/* Process any renames above the highwater mark. */
for (; as->snaprename < as->T->nins; as->snaprename++) {
IRIns *ir = IR(as->snaprename);
if (asm_snap_checkrename(as, ir->op1))
ir->op2 = REF_BIAS-1; /* Kill rename. */
}
}
}
/* -- Miscellaneous helpers ----------------------------------------------- */
/* Collect arguments from CALL* and CARG instructions. */
static void asm_collectargs(ASMState *as, IRIns *ir,
const CCallInfo *ci, IRRef *args)
{
uint32_t n = CCI_NARGS(ci);
lua_assert(n <= CCI_NARGS_MAX*2); /* Account for split args. */
if ((ci->flags & CCI_L)) { *args++ = ASMREF_L; n--; }
while (n-- > 1) {
ir = IR(ir->op1);
lua_assert(ir->o == IR_CARG);
args[n] = ir->op2 == REF_NIL ? 0 : ir->op2;
}
args[0] = ir->op1 == REF_NIL ? 0 : ir->op1;
lua_assert(IR(ir->op1)->o != IR_CARG);
}
/* Reconstruct CCallInfo flags for CALLX*. */
static uint32_t asm_callx_flags(ASMState *as, IRIns *ir)
{
uint32_t nargs = 0;
if (ir->op1 != REF_NIL) { /* Count number of arguments first. */
IRIns *ira = IR(ir->op1);
nargs++;
while (ira->o == IR_CARG) { nargs++; ira = IR(ira->op1); }
}
#if LJ_HASFFI
if (IR(ir->op2)->o == IR_CARG) { /* Copy calling convention info. */
CTypeID id = (CTypeID)IR(IR(ir->op2)->op2)->i;
CType *ct = ctype_get(ctype_ctsG(J2G(as->J)), id);
nargs |= ((ct->info & CTF_VARARG) ? CCI_VARARG : 0);
#if LJ_TARGET_X86
nargs |= (ctype_cconv(ct->info) << CCI_CC_SHIFT);
#endif
}
#endif
return (nargs | (ir->t.irt << CCI_OTSHIFT));
}
/* Calculate stack adjustment. */
static int32_t asm_stack_adjust(ASMState *as)
{
if (as->evenspill <= SPS_FIXED)
return 0;
return sps_scale(sps_align(as->evenspill));
}
/* Must match with hash*() in lj_tab.c. */
static uint32_t ir_khash(IRIns *ir)
{
uint32_t lo, hi;
if (irt_isstr(ir->t)) {
return ir_kstr(ir)->hash;
} else if (irt_isnum(ir->t)) {
lo = ir_knum(ir)->u32.lo;
hi = ir_knum(ir)->u32.hi << 1;
} else if (irt_ispri(ir->t)) {
lua_assert(!irt_isnil(ir->t));
return irt_type(ir->t)-IRT_FALSE;
} else {
lua_assert(irt_isgcv(ir->t));
lo = u32ptr(ir_kgc(ir));
hi = lo + HASH_BIAS;
}
return hashrot(lo, hi);
}
/* -- Allocations --------------------------------------------------------- */
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args);
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci);
static void asm_snew(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new];
IRRef args[3];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* const char *str */
args[2] = ir->op2; /* size_t len */
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
}
static void asm_tnew(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_new1];
IRRef args[2];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* uint32_t ahsize */
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCtab * */
asm_gencall(as, ci, args);
ra_allockreg(as, ir->op1 | (ir->op2 << 24), ra_releasetmp(as, ASMREF_TMP1));
}
static void asm_tdup(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_dup];
IRRef args[2];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* const GCtab *kt */
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCtab * */
asm_gencall(as, ci, args);
}
static void asm_gc_check(ASMState *as);
/* Explicit GC step. */
static void asm_gcstep(ASMState *as, IRIns *ir)
{
IRIns *ira;
for (ira = IR(as->stopins+1); ira < ir; ira++)
if ((ira->o == IR_TNEW || ira->o == IR_TDUP ||
(LJ_HASFFI && (ira->o == IR_CNEW || ira->o == IR_CNEWI))) &&
ra_used(ira))
as->gcsteps++;
if (as->gcsteps)
asm_gc_check(as);
as->gcsteps = 0x80000000; /* Prevent implicit GC check further up. */
}
/* -- PHI and loop handling ----------------------------------------------- */
/* Break a PHI cycle by renaming to a free register (evict if needed). */
static void asm_phi_break(ASMState *as, RegSet blocked, RegSet blockedby,
RegSet allow)
{
RegSet candidates = blocked & allow;
if (candidates) { /* If this register file has candidates. */
/* Note: the set for ra_pick cannot be empty, since each register file
** has some registers never allocated to PHIs.
*/
Reg down, up = ra_pick(as, ~blocked & allow); /* Get a free register. */
if (candidates & ~blockedby) /* Optimize shifts, else it's a cycle. */
candidates = candidates & ~blockedby;
down = rset_picktop(candidates); /* Pick candidate PHI register. */
ra_rename(as, down, up); /* And rename it to the free register. */
}
}
/* PHI register shuffling.
**
** The allocator tries hard to preserve PHI register assignments across
** the loop body. Most of the time this loop does nothing, since there
** are no register mismatches.
**
** If a register mismatch is detected and ...
** - the register is currently free: rename it.
** - the register is blocked by an invariant: restore/remat and rename it.
** - Otherwise the register is used by another PHI, so mark it as blocked.
**
** The renames are order-sensitive, so just retry the loop if a register
** is marked as blocked, but has been freed in the meantime. A cycle is
** detected if all of the blocked registers are allocated. To break the
** cycle rename one of them to a free register and retry.
**
** Note that PHI spill slots are kept in sync and don't need to be shuffled.
*/
static void asm_phi_shuffle(ASMState *as)
{
RegSet work;
/* Find and resolve PHI register mismatches. */
for (;;) {
RegSet blocked = RSET_EMPTY;
RegSet blockedby = RSET_EMPTY;
RegSet phiset = as->phiset;
while (phiset) { /* Check all left PHI operand registers. */
Reg r = rset_pickbot(phiset);
IRIns *irl = IR(as->phireg[r]);
Reg left = irl->r;
if (r != left) { /* Mismatch? */
if (!rset_test(as->freeset, r)) { /* PHI register blocked? */
IRRef ref = regcost_ref(as->cost[r]);
/* Blocked by other PHI (w/reg)? */
if (!ra_iskref(ref) && irt_ismarked(IR(ref)->t)) {
rset_set(blocked, r);
if (ra_hasreg(left))
rset_set(blockedby, left);
left = RID_NONE;
} else { /* Otherwise grab register from invariant. */
ra_restore(as, ref);
checkmclim(as);
}
}
if (ra_hasreg(left)) {
ra_rename(as, left, r);
checkmclim(as);
}
}
rset_clear(phiset, r);
}
if (!blocked) break; /* Finished. */
if (!(as->freeset & blocked)) { /* Break cycles if none are free. */
asm_phi_break(as, blocked, blockedby, RSET_GPR);
if (!LJ_SOFTFP) asm_phi_break(as, blocked, blockedby, RSET_FPR);
checkmclim(as);
} /* Else retry some more renames. */
}
/* Restore/remat invariants whose registers are modified inside the loop. */
#if !LJ_SOFTFP
work = as->modset & ~(as->freeset | as->phiset) & RSET_FPR;
while (work) {
Reg r = rset_pickbot(work);
ra_restore(as, regcost_ref(as->cost[r]));
rset_clear(work, r);
checkmclim(as);
}
#endif
work = as->modset & ~(as->freeset | as->phiset);
while (work) {
Reg r = rset_pickbot(work);
ra_restore(as, regcost_ref(as->cost[r]));
rset_clear(work, r);
checkmclim(as);
}
/* Allocate and save all unsaved PHI regs and clear marks. */
work = as->phiset;
while (work) {
Reg r = rset_picktop(work);
IRRef lref = as->phireg[r];
IRIns *ir = IR(lref);
if (ra_hasspill(ir->s)) { /* Left PHI gained a spill slot? */
irt_clearmark(ir->t); /* Handled here, so clear marker now. */
ra_alloc1(as, lref, RID2RSET(r));
ra_save(as, ir, r); /* Save to spill slot inside the loop. */
checkmclim(as);
}
rset_clear(work, r);
}
}
/* Copy unsynced left/right PHI spill slots. Rarely needed. */
static void asm_phi_copyspill(ASMState *as)
{
int need = 0;
IRIns *ir;
for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--)
if (ra_hasspill(ir->s) && ra_hasspill(IR(ir->op1)->s))
need |= irt_isfp(ir->t) ? 2 : 1; /* Unsynced spill slot? */
if ((need & 1)) { /* Copy integer spill slots. */
#if !LJ_TARGET_X86ORX64
Reg r = RID_TMP;
#else
Reg r = RID_RET;
if ((as->freeset & RSET_GPR))
r = rset_pickbot((as->freeset & RSET_GPR));
else
emit_spload(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
#endif
for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) {
if (ra_hasspill(ir->s)) {
IRIns *irl = IR(ir->op1);
if (ra_hasspill(irl->s) && !irt_isfp(ir->t)) {
emit_spstore(as, irl, r, sps_scale(irl->s));
emit_spload(as, ir, r, sps_scale(ir->s));
checkmclim(as);
}
}
}
#if LJ_TARGET_X86ORX64
if (!rset_test(as->freeset, r))
emit_spstore(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
#endif
}
#if !LJ_SOFTFP
if ((need & 2)) { /* Copy FP spill slots. */
#if LJ_TARGET_X86
Reg r = RID_XMM0;
#else
Reg r = RID_FPRET;
#endif
if ((as->freeset & RSET_FPR))
r = rset_pickbot((as->freeset & RSET_FPR));
if (!rset_test(as->freeset, r))
emit_spload(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
for (ir = IR(as->orignins-1); ir->o == IR_PHI; ir--) {
if (ra_hasspill(ir->s)) {
IRIns *irl = IR(ir->op1);
if (ra_hasspill(irl->s) && irt_isfp(ir->t)) {
emit_spstore(as, irl, r, sps_scale(irl->s));
emit_spload(as, ir, r, sps_scale(ir->s));
checkmclim(as);
}
}
}
if (!rset_test(as->freeset, r))
emit_spstore(as, IR(regcost_ref(as->cost[r])), r, SPOFS_TMP);
}
#endif
}
/* Emit renames for left PHIs which are only spilled outside the loop. */
static void asm_phi_fixup(ASMState *as)
{
RegSet work = as->phiset;
while (work) {
Reg r = rset_picktop(work);
IRRef lref = as->phireg[r];
IRIns *ir = IR(lref);
if (irt_ismarked(ir->t)) {
irt_clearmark(ir->t);
/* Left PHI gained a spill slot before the loop? */
if (ra_hasspill(ir->s)) {
IRRef ren;
lj_ir_set(as->J, IRT(IR_RENAME, IRT_NIL), lref, as->loopsnapno);
ren = tref_ref(lj_ir_emit(as->J));
as->ir = as->T->ir; /* The IR may have been reallocated. */
IR(ren)->r = (uint8_t)r;
IR(ren)->s = SPS_NONE;
}
}
rset_clear(work, r);
}
}
/* Setup right PHI reference. */
static void asm_phi(ASMState *as, IRIns *ir)
{
RegSet allow = ((!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR) &
~as->phiset;
RegSet afree = (as->freeset & allow);
IRIns *irl = IR(ir->op1);
IRIns *irr = IR(ir->op2);
if (ir->r == RID_SINK) /* Sink PHI. */
return;
/* Spill slot shuffling is not implemented yet (but rarely needed). */
if (ra_hasspill(irl->s) || ra_hasspill(irr->s))
lj_trace_err(as->J, LJ_TRERR_NYIPHI);
/* Leave at least one register free for non-PHIs (and PHI cycle breaking). */
if ((afree & (afree-1))) { /* Two or more free registers? */
Reg r;
if (ra_noreg(irr->r)) { /* Get a register for the right PHI. */
r = ra_allocref(as, ir->op2, allow);
} else { /* Duplicate right PHI, need a copy (rare). */
r = ra_scratch(as, allow);
emit_movrr(as, irr, r, irr->r);
}
ir->r = (uint8_t)r;
rset_set(as->phiset, r);
as->phireg[r] = (IRRef1)ir->op1;
irt_setmark(irl->t); /* Marks left PHIs _with_ register. */
if (ra_noreg(irl->r))
ra_sethint(irl->r, r); /* Set register hint for left PHI. */
} else { /* Otherwise allocate a spill slot. */
/* This is overly restrictive, but it triggers only on synthetic code. */
if (ra_hasreg(irl->r) || ra_hasreg(irr->r))
lj_trace_err(as->J, LJ_TRERR_NYIPHI);
ra_spill(as, ir);
irr->s = ir->s; /* Set right PHI spill slot. Sync left slot later. */
}
}
static void asm_loop_fixup(ASMState *as);
/* Middle part of a loop. */
static void asm_loop(ASMState *as)
{
MCode *mcspill;
/* LOOP is a guard, so the snapno is up to date. */
as->loopsnapno = as->snapno;
if (as->gcsteps)
asm_gc_check(as);
/* LOOP marks the transition from the variant to the invariant part. */
as->flagmcp = as->invmcp = NULL;
as->sectref = 0;
if (!neverfuse(as)) as->fuseref = 0;
asm_phi_shuffle(as);
mcspill = as->mcp;
asm_phi_copyspill(as);
asm_loop_fixup(as);
as->mcloop = as->mcp;
RA_DBGX((as, "===== LOOP ====="));
if (!as->realign) RA_DBG_FLUSH();
if (as->mcp != mcspill)
emit_jmp(as, mcspill);
}
/* -- Target-specific assembler ------------------------------------------- */
#if LJ_TARGET_X86ORX64
#include "lj_asm_x86.h"
#elif LJ_TARGET_ARM
#include "lj_asm_arm.h"
#elif LJ_TARGET_PPC
#include "lj_asm_ppc.h"
#elif LJ_TARGET_MIPS
#include "lj_asm_mips.h"
#else
#error "Missing assembler for target CPU"
#endif
/* -- Head of trace ------------------------------------------------------- */
/* Head of a root trace. */
static void asm_head_root(ASMState *as)
{
int32_t spadj;
asm_head_root_base(as);
emit_setvmstate(as, (int32_t)as->T->traceno);
spadj = asm_stack_adjust(as);
as->T->spadjust = (uint16_t)spadj;
emit_spsub(as, spadj);
/* Root traces assume a checked stack for the starting proto. */
as->T->topslot = gcref(as->T->startpt)->pt.framesize;
}
/* Head of a side trace.
**
** The current simplistic algorithm requires that all slots inherited
** from the parent are live in a register between pass 2 and pass 3. This
** avoids the complexity of stack slot shuffling. But of course this may
** overflow the register set in some cases and cause the dreaded error:
** "NYI: register coalescing too complex". A refined algorithm is needed.
*/
static void asm_head_side(ASMState *as)
{
IRRef1 sloadins[RID_MAX];
RegSet allow = RSET_ALL; /* Inverse of all coalesced registers. */
RegSet live = RSET_EMPTY; /* Live parent registers. */
IRIns *irp = &as->parent->ir[REF_BASE]; /* Parent base. */
int32_t spadj, spdelta;
int pass2 = 0;
int pass3 = 0;
IRRef i;
if (as->snapno && as->topslot > as->parent->topslot) {
/* Force snap #0 alloc to prevent register overwrite in stack check. */
as->snapno = 0;
asm_snap_alloc(as);
}
allow = asm_head_side_base(as, irp, allow);
/* Scan all parent SLOADs and collect register dependencies. */
for (i = as->stopins; i > REF_BASE; i--) {
IRIns *ir = IR(i);
RegSP rs;
lua_assert((ir->o == IR_SLOAD && (ir->op2 & IRSLOAD_PARENT)) ||
(LJ_SOFTFP && ir->o == IR_HIOP) || ir->o == IR_PVAL);
rs = as->parentmap[i - REF_FIRST];
if (ra_hasreg(ir->r)) {
rset_clear(allow, ir->r);
if (ra_hasspill(ir->s)) {
ra_save(as, ir, ir->r);
checkmclim(as);
}
} else if (ra_hasspill(ir->s)) {
irt_setmark(ir->t);
pass2 = 1;
}
if (ir->r == rs) { /* Coalesce matching registers right now. */
ra_free(as, ir->r);
} else if (ra_hasspill(regsp_spill(rs))) {
if (ra_hasreg(ir->r))
pass3 = 1;
} else if (ra_used(ir)) {
sloadins[rs] = (IRRef1)i;
rset_set(live, rs); /* Block live parent register. */
}
}
/* Calculate stack frame adjustment. */
spadj = asm_stack_adjust(as);
spdelta = spadj - (int32_t)as->parent->spadjust;
if (spdelta < 0) { /* Don't shrink the stack frame. */
spadj = (int32_t)as->parent->spadjust;
spdelta = 0;
}
as->T->spadjust = (uint16_t)spadj;
/* Reload spilled target registers. */
if (pass2) {
for (i = as->stopins; i > REF_BASE; i--) {
IRIns *ir = IR(i);
if (irt_ismarked(ir->t)) {
RegSet mask;
Reg r;
RegSP rs;
irt_clearmark(ir->t);
rs = as->parentmap[i - REF_FIRST];
if (!ra_hasspill(regsp_spill(rs)))
ra_sethint(ir->r, rs); /* Hint may be gone, set it again. */
else if (sps_scale(regsp_spill(rs))+spdelta == sps_scale(ir->s))
continue; /* Same spill slot, do nothing. */
mask = ((!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR) & allow;
if (mask == RSET_EMPTY)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
r = ra_allocref(as, i, mask);
ra_save(as, ir, r);
rset_clear(allow, r);
if (r == rs) { /* Coalesce matching registers right now. */
ra_free(as, r);
rset_clear(live, r);
} else if (ra_hasspill(regsp_spill(rs))) {
pass3 = 1;
}
checkmclim(as);
}
}
}
/* Store trace number and adjust stack frame relative to the parent. */
emit_setvmstate(as, (int32_t)as->T->traceno);
emit_spsub(as, spdelta);
#if !LJ_TARGET_X86ORX64
/* Restore BASE register from parent spill slot. */
if (ra_hasspill(irp->s))
emit_spload(as, IR(REF_BASE), IR(REF_BASE)->r, sps_scale(irp->s));
#endif
/* Restore target registers from parent spill slots. */
if (pass3) {
RegSet work = ~as->freeset & RSET_ALL;
while (work) {
Reg r = rset_pickbot(work);
IRRef ref = regcost_ref(as->cost[r]);
RegSP rs = as->parentmap[ref - REF_FIRST];
rset_clear(work, r);
if (ra_hasspill(regsp_spill(rs))) {
int32_t ofs = sps_scale(regsp_spill(rs));
ra_free(as, r);
emit_spload(as, IR(ref), r, ofs);
checkmclim(as);
}
}
}
/* Shuffle registers to match up target regs with parent regs. */
for (;;) {
RegSet work;
/* Repeatedly coalesce free live registers by moving to their target. */
while ((work = as->freeset & live) != RSET_EMPTY) {
Reg rp = rset_pickbot(work);
IRIns *ir = IR(sloadins[rp]);
rset_clear(live, rp);
rset_clear(allow, rp);
ra_free(as, ir->r);
emit_movrr(as, ir, ir->r, rp);
checkmclim(as);
}
/* We're done if no live registers remain. */
if (live == RSET_EMPTY)
break;
/* Break cycles by renaming one target to a temp. register. */
if (live & RSET_GPR) {
RegSet tmpset = as->freeset & ~live & allow & RSET_GPR;
if (tmpset == RSET_EMPTY)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
ra_rename(as, rset_pickbot(live & RSET_GPR), rset_pickbot(tmpset));
}
if (!LJ_SOFTFP && (live & RSET_FPR)) {
RegSet tmpset = as->freeset & ~live & allow & RSET_FPR;
if (tmpset == RSET_EMPTY)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
ra_rename(as, rset_pickbot(live & RSET_FPR), rset_pickbot(tmpset));
}
checkmclim(as);
/* Continue with coalescing to fix up the broken cycle(s). */
}
/* Inherit top stack slot already checked by parent trace. */
as->T->topslot = as->parent->topslot;
if (as->topslot > as->T->topslot) { /* Need to check for higher slot? */
#ifdef EXITSTATE_CHECKEXIT
/* Highest exit + 1 indicates stack check. */
ExitNo exitno = as->T->nsnap;
#else
/* Reuse the parent exit in the context of the parent trace. */
ExitNo exitno = as->J->exitno;
#endif
as->T->topslot = (uint8_t)as->topslot; /* Remember for child traces. */
asm_stack_check(as, as->topslot, irp, allow & RSET_GPR, exitno);
}
}
/* -- Tail of trace ------------------------------------------------------- */
/* Get base slot for a snapshot. */
static BCReg asm_baseslot(ASMState *as, SnapShot *snap, int *gotframe)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
MSize n;
for (n = snap->nent; n > 0; n--) {
SnapEntry sn = map[n-1];
if ((sn & SNAP_FRAME)) {
*gotframe = 1;
return snap_slot(sn);
}
}
return 0;
}
/* Link to another trace. */
static void asm_tail_link(ASMState *as)
{
SnapNo snapno = as->T->nsnap-1; /* Last snapshot. */
SnapShot *snap = &as->T->snap[snapno];
int gotframe = 0;
BCReg baseslot = asm_baseslot(as, snap, &gotframe);
as->topslot = snap->topslot;
checkmclim(as);
ra_allocref(as, REF_BASE, RID2RSET(RID_BASE));
if (as->T->link == 0) {
/* Setup fixed registers for exit to interpreter. */
const BCIns *pc = snap_pc(as->T->snapmap[snap->mapofs + snap->nent]);
int32_t mres;
if (bc_op(*pc) == BC_JLOOP) { /* NYI: find a better way to do this. */
BCIns *retpc = &traceref(as->J, bc_d(*pc))->startins;
if (bc_isret(bc_op(*retpc)))
pc = retpc;
}
ra_allockreg(as, i32ptr(J2GG(as->J)->dispatch), RID_DISPATCH);
ra_allockreg(as, i32ptr(pc), RID_LPC);
mres = (int32_t)(snap->nslots - baseslot);
switch (bc_op(*pc)) {
case BC_CALLM: case BC_CALLMT:
mres -= (int32_t)(1 + bc_a(*pc) + bc_c(*pc)); break;
case BC_RETM: mres -= (int32_t)(bc_a(*pc) + bc_d(*pc)); break;
case BC_TSETM: mres -= (int32_t)bc_a(*pc); break;
default: if (bc_op(*pc) < BC_FUNCF) mres = 0; break;
}
ra_allockreg(as, mres, RID_RET); /* Return MULTRES or 0. */
} else if (baseslot) {
/* Save modified BASE for linking to trace with higher start frame. */
emit_setgl(as, RID_BASE, jit_base);
}
emit_addptr(as, RID_BASE, 8*(int32_t)baseslot);
/* Sync the interpreter state with the on-trace state. */
asm_stack_restore(as, snap);
/* Root traces that add frames need to check the stack at the end. */
if (!as->parent && gotframe)
asm_stack_check(as, as->topslot, NULL, as->freeset & RSET_GPR, snapno);
}
/* -- Trace setup --------------------------------------------------------- */
/* Clear reg/sp for all instructions and add register hints. */
static void asm_setup_regsp(ASMState *as)
{
GCtrace *T = as->T;
int sink = T->sinktags;
IRRef nins = T->nins;
IRIns *ir, *lastir;
int inloop;
#if LJ_TARGET_ARM
uint32_t rload = 0xa6402a64;
#endif
ra_setup(as);
/* Clear reg/sp for constants. */
for (ir = IR(T->nk), lastir = IR(REF_BASE); ir < lastir; ir++)
ir->prev = REGSP_INIT;
/* REF_BASE is used for implicit references to the BASE register. */
lastir->prev = REGSP_HINT(RID_BASE);
ir = IR(nins-1);
if (ir->o == IR_RENAME) {
do { ir--; nins--; } while (ir->o == IR_RENAME);
T->nins = nins; /* Remove any renames left over from ASM restart. */
}
as->snaprename = nins;
as->snapref = nins;
as->snapno = T->nsnap;
as->stopins = REF_BASE;
as->orignins = nins;
as->curins = nins;
/* Setup register hints for parent link instructions. */
ir = IR(REF_FIRST);
if (as->parent) {
uint16_t *p;
lastir = lj_snap_regspmap(as->parent, as->J->exitno, ir);
if (lastir - ir > LJ_MAX_JSLOTS)
lj_trace_err(as->J, LJ_TRERR_NYICOAL);
as->stopins = (IRRef)((lastir-1) - as->ir);
for (p = as->parentmap; ir < lastir; ir++) {
RegSP rs = ir->prev;
*p++ = (uint16_t)rs; /* Copy original parent RegSP to parentmap. */
if (!ra_hasspill(regsp_spill(rs)))
ir->prev = (uint16_t)REGSP_HINT(regsp_reg(rs));
else
ir->prev = REGSP_INIT;
}
}
inloop = 0;
as->evenspill = SPS_FIRST;
for (lastir = IR(nins); ir < lastir; ir++) {
if (sink) {
if (ir->r == RID_SINK)
continue;
if (ir->r == RID_SUNK) { /* Revert after ASM restart. */
ir->r = RID_SINK;
continue;
}
}
switch (ir->o) {
case IR_LOOP:
inloop = 1;
break;
#if LJ_TARGET_ARM
case IR_SLOAD:
if (!((ir->op2 & IRSLOAD_TYPECHECK) || (ir+1)->o == IR_HIOP))
break;
/* fallthrough */
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
if (!LJ_SOFTFP && irt_isnum(ir->t)) break;
ir->prev = (uint16_t)REGSP_HINT((rload & 15));
rload = lj_ror(rload, 4);
continue;
#endif
case IR_CALLXS: {
CCallInfo ci;
ci.flags = asm_callx_flags(as, ir);
ir->prev = asm_setup_call_slots(as, ir, &ci);
if (inloop)
as->modset |= RSET_SCRATCH;
continue;
}
case IR_CALLN: case IR_CALLL: case IR_CALLS: {
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
ir->prev = asm_setup_call_slots(as, ir, ci);
if (inloop)
as->modset |= (ci->flags & CCI_NOFPRCLOBBER) ?
(RSET_SCRATCH & ~RSET_FPR) : RSET_SCRATCH;
continue;
}
#if LJ_SOFTFP || (LJ_32 && LJ_HASFFI)
case IR_HIOP:
switch ((ir-1)->o) {
#if LJ_SOFTFP && LJ_TARGET_ARM
case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
if (ra_hashint((ir-1)->r)) {
ir->prev = (ir-1)->prev + 1;
continue;
}
break;
#endif
#if !LJ_SOFTFP && LJ_NEED_FP64
case IR_CONV:
if (irt_isfp((ir-1)->t)) {
ir->prev = REGSP_HINT(RID_FPRET);
continue;
}
/* fallthrough */
#endif
case IR_CALLN: case IR_CALLXS:
#if LJ_SOFTFP
case IR_MIN: case IR_MAX:
#endif
(ir-1)->prev = REGSP_HINT(RID_RETLO);
ir->prev = REGSP_HINT(RID_RETHI);
continue;
default:
break;
}
break;
#endif
#if LJ_SOFTFP
case IR_MIN: case IR_MAX:
if ((ir+1)->o != IR_HIOP) break;
/* fallthrough */
#endif
/* C calls evict all scratch regs and return results in RID_RET. */
case IR_SNEW: case IR_XSNEW: case IR_NEWREF:
if (REGARG_NUMGPR < 3 && as->evenspill < 3)
as->evenspill = 3; /* lj_str_new and lj_tab_newkey need 3 args. */
case IR_TNEW: case IR_TDUP: case IR_CNEW: case IR_CNEWI: case IR_TOSTR:
ir->prev = REGSP_HINT(RID_RET);
if (inloop)
as->modset = RSET_SCRATCH;
continue;
case IR_STRTO: case IR_OBAR:
if (inloop)
as->modset = RSET_SCRATCH;
break;
#if !LJ_TARGET_X86ORX64 && !LJ_SOFTFP
case IR_ATAN2: case IR_LDEXP:
#endif
case IR_POW:
if (!LJ_SOFTFP && irt_isnum(ir->t)) {
#if LJ_TARGET_X86ORX64
ir->prev = REGSP_HINT(RID_XMM0);
if (inloop)
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
#else
ir->prev = REGSP_HINT(RID_FPRET);
if (inloop)
as->modset |= RSET_SCRATCH;
#endif
continue;
}
/* fallthrough for integer POW */
case IR_DIV: case IR_MOD:
if (!irt_isnum(ir->t)) {
ir->prev = REGSP_HINT(RID_RET);
if (inloop)
as->modset |= (RSET_SCRATCH & RSET_GPR);
continue;
}
break;
case IR_FPMATH:
#if LJ_TARGET_X86ORX64
if (ir->op2 == IRFPM_EXP2) { /* May be joined to lj_vm_pow_sse. */
ir->prev = REGSP_HINT(RID_XMM0);
#if !LJ_64
if (as->evenspill < 4) /* Leave room for 16 byte scratch area. */
as->evenspill = 4;
#endif
if (inloop)
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
continue;
} else if (ir->op2 <= IRFPM_TRUNC && !(as->flags & JIT_F_SSE4_1)) {
ir->prev = REGSP_HINT(RID_XMM0);
if (inloop)
as->modset |= RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
continue;
}
break;
#else
ir->prev = REGSP_HINT(RID_FPRET);
if (inloop)
as->modset |= RSET_SCRATCH;
continue;
#endif
#if LJ_TARGET_X86ORX64
/* Non-constant shift counts need to be in RID_ECX on x86/x64. */
case IR_BSHL: case IR_BSHR: case IR_BSAR: case IR_BROL: case IR_BROR:
if (!irref_isk(ir->op2) && !ra_hashint(IR(ir->op2)->r)) {
IR(ir->op2)->r = REGSP_HINT(RID_ECX);
if (inloop)
rset_set(as->modset, RID_ECX);
}
break;
#endif
/* Do not propagate hints across type conversions or loads. */
case IR_TOBIT:
case IR_XLOAD:
#if !LJ_TARGET_ARM
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
#endif
break;
case IR_CONV:
if (irt_isfp(ir->t) || (ir->op2 & IRCONV_SRCMASK) == IRT_NUM ||
(ir->op2 & IRCONV_SRCMASK) == IRT_FLOAT)
break;
/* fallthrough */
default:
/* Propagate hints across likely 'op reg, imm' or 'op reg'. */
if (irref_isk(ir->op2) && !irref_isk(ir->op1) &&
ra_hashint(regsp_reg(IR(ir->op1)->prev))) {
ir->prev = IR(ir->op1)->prev;
continue;
}
break;
}
ir->prev = REGSP_INIT;
}
if ((as->evenspill & 1))
as->oddspill = as->evenspill++;
else
as->oddspill = 0;
}
/* -- Assembler core ------------------------------------------------------ */
/* Assemble a trace. */
void lj_asm_trace(jit_State *J, GCtrace *T)
{
ASMState as_;
ASMState *as = &as_;
MCode *origtop;
/* Ensure an initialized instruction beyond the last one for HIOP checks. */
J->cur.nins = lj_ir_nextins(J);
J->cur.ir[J->cur.nins].o = IR_NOP;
/* Setup initial state. Copy some fields to reduce indirections. */
as->J = J;
as->T = T;
as->ir = T->ir;
as->flags = J->flags;
as->loopref = J->loopref;
as->realign = NULL;
as->loopinv = 0;
as->parent = J->parent ? traceref(J, J->parent) : NULL;
/* Reserve MCode memory. */
as->mctop = origtop = lj_mcode_reserve(J, &as->mcbot);
as->mcp = as->mctop;
as->mclim = as->mcbot + MCLIM_REDZONE;
asm_setup_target(as);
do {
as->mcp = as->mctop;
#ifdef LUA_USE_ASSERT
as->mcp_prev = as->mcp;
#endif
as->curins = T->nins;
RA_DBG_START();
RA_DBGX((as, "===== STOP ====="));
/* General trace setup. Emit tail of trace. */
asm_tail_prep(as);
as->mcloop = NULL;
as->flagmcp = NULL;
as->topslot = 0;
as->gcsteps = 0;
as->sectref = as->loopref;
as->fuseref = (as->flags & JIT_F_OPT_FUSE) ? as->loopref : FUSE_DISABLED;
asm_setup_regsp(as);
if (!as->loopref)
asm_tail_link(as);
/* Assemble a trace in linear backwards order. */
for (as->curins--; as->curins > as->stopins; as->curins--) {
IRIns *ir = IR(as->curins);
lua_assert(!(LJ_32 && irt_isint64(ir->t))); /* Handled by SPLIT. */
if (!ra_used(ir) && !ir_sideeff(ir) && (as->flags & JIT_F_OPT_DCE))
continue; /* Dead-code elimination can be soooo easy. */
if (irt_isguard(ir->t))
asm_snap_prep(as);
RA_DBG_REF();
checkmclim(as);
asm_ir(as, ir);
}
} while (as->realign); /* Retry in case the MCode needs to be realigned. */
/* Emit head of trace. */
RA_DBG_REF();
checkmclim(as);
if (as->gcsteps > 0) {
as->curins = as->T->snap[0].ref;
asm_snap_prep(as); /* The GC check is a guard. */
asm_gc_check(as);
}
ra_evictk(as);
if (as->parent)
asm_head_side(as);
else
asm_head_root(as);
asm_phi_fixup(as);
RA_DBGX((as, "===== START ===="));
RA_DBG_FLUSH();
if (as->freeset != RSET_ALL)
lj_trace_err(as->J, LJ_TRERR_BADRA); /* Ouch! Should never happen. */
/* Set trace entry point before fixing up tail to allow link to self. */
T->mcode = as->mcp;
T->mcloop = as->mcloop ? (MSize)((char *)as->mcloop - (char *)as->mcp) : 0;
if (!as->loopref)
asm_tail_fixup(as, T->link); /* Note: this may change as->mctop! */
T->szmcode = (MSize)((char *)as->mctop - (char *)as->mcp);
lj_mcode_sync(T->mcode, origtop);
}
#undef IR
#endif