1
0
Fork 0
Aegisub/subprojects/luajit/src/lj_asm_arm.h

2361 lines
74 KiB
C

/*
** ARM IR assembler (SSA IR -> machine code).
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
*/
/* -- Register allocator extensions --------------------------------------- */
/* Allocate a register with a hint. */
static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow)
{
Reg r = IR(ref)->r;
if (ra_noreg(r)) {
if (!ra_hashint(r) && !iscrossref(as, ref))
ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */
r = ra_allocref(as, ref, allow);
}
ra_noweak(as, r);
return r;
}
/* Allocate a scratch register pair. */
static Reg ra_scratchpair(ASMState *as, RegSet allow)
{
RegSet pick1 = as->freeset & allow;
RegSet pick2 = pick1 & (pick1 >> 1) & RSET_GPREVEN;
Reg r;
if (pick2) {
r = rset_picktop(pick2);
} else {
RegSet pick = pick1 & (allow >> 1) & RSET_GPREVEN;
if (pick) {
r = rset_picktop(pick);
ra_restore(as, regcost_ref(as->cost[r+1]));
} else {
pick = pick1 & (allow << 1) & RSET_GPRODD;
if (pick) {
r = ra_restore(as, regcost_ref(as->cost[rset_picktop(pick)-1]));
} else {
r = ra_evict(as, allow & (allow >> 1) & RSET_GPREVEN);
ra_restore(as, regcost_ref(as->cost[r+1]));
}
}
}
lua_assert(rset_test(RSET_GPREVEN, r));
ra_modified(as, r);
ra_modified(as, r+1);
RA_DBGX((as, "scratchpair $r $r", r, r+1));
return r;
}
#if !LJ_SOFTFP
/* Allocate two source registers for three-operand instructions. */
static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow)
{
IRIns *irl = IR(ir->op1), *irr = IR(ir->op2);
Reg left = irl->r, right = irr->r;
if (ra_hasreg(left)) {
ra_noweak(as, left);
if (ra_noreg(right))
right = ra_allocref(as, ir->op2, rset_exclude(allow, left));
else
ra_noweak(as, right);
} else if (ra_hasreg(right)) {
ra_noweak(as, right);
left = ra_allocref(as, ir->op1, rset_exclude(allow, right));
} else if (ra_hashint(right)) {
right = ra_allocref(as, ir->op2, allow);
left = ra_alloc1(as, ir->op1, rset_exclude(allow, right));
} else {
left = ra_allocref(as, ir->op1, allow);
right = ra_alloc1(as, ir->op2, rset_exclude(allow, left));
}
return left | (right << 8);
}
#endif
/* -- Guard handling ------------------------------------------------------ */
/* Generate an exit stub group at the bottom of the reserved MCode memory. */
static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
{
MCode *mxp = as->mcbot;
int i;
if (mxp + 4*4+4*EXITSTUBS_PER_GROUP >= as->mctop)
asm_mclimit(as);
/* str lr, [sp]; bl ->vm_exit_handler; .long DISPATCH_address, group. */
*mxp++ = ARMI_STR|ARMI_LS_P|ARMI_LS_U|ARMF_D(RID_LR)|ARMF_N(RID_SP);
*mxp = ARMI_BL|((((MCode *)(void *)lj_vm_exit_handler-mxp)-2)&0x00ffffffu);
mxp++;
*mxp++ = (MCode)i32ptr(J2GG(as->J)->dispatch); /* DISPATCH address */
*mxp++ = group*EXITSTUBS_PER_GROUP;
for (i = 0; i < EXITSTUBS_PER_GROUP; i++)
*mxp++ = ARMI_B|((-6-i)&0x00ffffffu);
lj_mcode_sync(as->mcbot, mxp);
lj_mcode_commitbot(as->J, mxp);
as->mcbot = mxp;
as->mclim = as->mcbot + MCLIM_REDZONE;
return mxp - EXITSTUBS_PER_GROUP;
}
/* Setup all needed exit stubs. */
static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
{
ExitNo i;
if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
lj_trace_err(as->J, LJ_TRERR_SNAPOV);
for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
if (as->J->exitstubgroup[i] == NULL)
as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
}
/* Emit conditional branch to exit for guard. */
static void asm_guardcc(ASMState *as, ARMCC cc)
{
MCode *target = exitstub_addr(as->J, as->snapno);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->loopinv = 1;
*p = ARMI_BL | ((target-p-2) & 0x00ffffffu);
emit_branch(as, ARMF_CC(ARMI_B, cc^1), p+1);
return;
}
emit_branch(as, ARMF_CC(ARMI_BL, cc), target);
}
/* -- Operand fusion ------------------------------------------------------ */
/* Limit linear search to this distance. Avoids O(n^2) behavior. */
#define CONFLICT_SEARCH_LIM 31
/* Check if there's no conflicting instruction between curins and ref. */
static int noconflict(ASMState *as, IRRef ref, IROp conflict)
{
IRIns *ir = as->ir;
IRRef i = as->curins;
if (i > ref + CONFLICT_SEARCH_LIM)
return 0; /* Give up, ref is too far away. */
while (--i > ref)
if (ir[i].o == conflict)
return 0; /* Conflict found. */
return 1; /* Ok, no conflict. */
}
/* Fuse the array base of colocated arrays. */
static int32_t asm_fuseabase(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE &&
!neverfuse(as) && noconflict(as, ref, IR_NEWREF))
return (int32_t)sizeof(GCtab);
return 0;
}
/* Fuse array/hash/upvalue reference into register+offset operand. */
static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow,
int lim)
{
IRIns *ir = IR(ref);
if (ra_noreg(ir->r)) {
if (ir->o == IR_AREF) {
if (mayfuse(as, ref)) {
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
ofs += 8*IR(ir->op2)->i;
if (ofs > -lim && ofs < lim) {
*ofsp = ofs;
return ra_alloc1(as, refa, allow);
}
}
}
} else if (ir->o == IR_HREFK) {
if (mayfuse(as, ref)) {
int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
if (ofs < lim) {
*ofsp = ofs;
return ra_alloc1(as, ir->op1, allow);
}
}
} else if (ir->o == IR_UREFC) {
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv);
*ofsp = (ofs & 255); /* Mask out less bits to allow LDRD. */
return ra_allock(as, (ofs & ~255), allow);
}
}
}
*ofsp = 0;
return ra_alloc1(as, ref, allow);
}
/* Fuse m operand into arithmetic/logic instructions. */
static uint32_t asm_fuseopm(ASMState *as, ARMIns ai, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
if (ra_hasreg(ir->r)) {
ra_noweak(as, ir->r);
return ARMF_M(ir->r);
} else if (irref_isk(ref)) {
uint32_t k = emit_isk12(ai, ir->i);
if (k)
return k;
} else if (mayfuse(as, ref)) {
if (ir->o >= IR_BSHL && ir->o <= IR_BROR) {
Reg m = ra_alloc1(as, ir->op1, allow);
ARMShift sh = ir->o == IR_BSHL ? ARMSH_LSL :
ir->o == IR_BSHR ? ARMSH_LSR :
ir->o == IR_BSAR ? ARMSH_ASR : ARMSH_ROR;
if (irref_isk(ir->op2)) {
return m | ARMF_SH(sh, (IR(ir->op2)->i & 31));
} else {
Reg s = ra_alloc1(as, ir->op2, rset_exclude(allow, m));
return m | ARMF_RSH(sh, s);
}
} else if (ir->o == IR_ADD && ir->op1 == ir->op2) {
Reg m = ra_alloc1(as, ir->op1, allow);
return m | ARMF_SH(ARMSH_LSL, 1);
}
}
return ra_allocref(as, ref, allow);
}
/* Fuse shifts into loads/stores. Only bother with BSHL 2 => lsl #2. */
static IRRef asm_fuselsl2(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (ra_noreg(ir->r) && mayfuse(as, ref) && ir->o == IR_BSHL &&
irref_isk(ir->op2) && IR(ir->op2)->i == 2)
return ir->op1;
return 0; /* No fusion. */
}
/* Fuse XLOAD/XSTORE reference into load/store operand. */
static void asm_fusexref(ASMState *as, ARMIns ai, Reg rd, IRRef ref,
RegSet allow, int32_t ofs)
{
IRIns *ir = IR(ref);
Reg base;
if (ra_noreg(ir->r) && canfuse(as, ir)) {
int32_t lim = (!LJ_SOFTFP && (ai & 0x08000000)) ? 1024 :
(ai & 0x04000000) ? 4096 : 256;
if (ir->o == IR_ADD) {
int32_t ofs2;
if (irref_isk(ir->op2) &&
(ofs2 = ofs + IR(ir->op2)->i) > -lim && ofs2 < lim &&
(!(!LJ_SOFTFP && (ai & 0x08000000)) || !(ofs2 & 3))) {
ofs = ofs2;
ref = ir->op1;
} else if (ofs == 0 && !(!LJ_SOFTFP && (ai & 0x08000000))) {
IRRef lref = ir->op1, rref = ir->op2;
Reg rn, rm;
if ((ai & 0x04000000)) {
IRRef sref = asm_fuselsl2(as, rref);
if (sref) {
rref = sref;
ai |= ARMF_SH(ARMSH_LSL, 2);
} else if ((sref = asm_fuselsl2(as, lref)) != 0) {
lref = rref;
rref = sref;
ai |= ARMF_SH(ARMSH_LSL, 2);
}
}
rn = ra_alloc1(as, lref, allow);
rm = ra_alloc1(as, rref, rset_exclude(allow, rn));
if ((ai & 0x04000000)) ai |= ARMI_LS_R;
emit_dnm(as, ai|ARMI_LS_P|ARMI_LS_U, rd, rn, rm);
return;
}
} else if (ir->o == IR_STRREF && !(!LJ_SOFTFP && (ai & 0x08000000))) {
lua_assert(ofs == 0);
ofs = (int32_t)sizeof(GCstr);
if (irref_isk(ir->op2)) {
ofs += IR(ir->op2)->i;
ref = ir->op1;
} else if (irref_isk(ir->op1)) {
ofs += IR(ir->op1)->i;
ref = ir->op2;
} else {
/* NYI: Fuse ADD with constant. */
Reg rn = ra_alloc1(as, ir->op1, allow);
uint32_t m = asm_fuseopm(as, 0, ir->op2, rset_exclude(allow, rn));
if ((ai & 0x04000000))
emit_lso(as, ai, rd, rd, ofs);
else
emit_lsox(as, ai, rd, rd, ofs);
emit_dn(as, ARMI_ADD^m, rd, rn);
return;
}
if (ofs <= -lim || ofs >= lim) {
Reg rn = ra_alloc1(as, ref, allow);
Reg rm = ra_allock(as, ofs, rset_exclude(allow, rn));
if ((ai & 0x04000000)) ai |= ARMI_LS_R;
emit_dnm(as, ai|ARMI_LS_P|ARMI_LS_U, rd, rn, rm);
return;
}
}
}
base = ra_alloc1(as, ref, allow);
#if !LJ_SOFTFP
if ((ai & 0x08000000))
emit_vlso(as, ai, rd, base, ofs);
else
#endif
if ((ai & 0x04000000))
emit_lso(as, ai, rd, base, ofs);
else
emit_lsox(as, ai, rd, base, ofs);
}
#if !LJ_SOFTFP
/* Fuse to multiply-add/sub instruction. */
static int asm_fusemadd(ASMState *as, IRIns *ir, ARMIns ai, ARMIns air)
{
IRRef lref = ir->op1, rref = ir->op2;
IRIns *irm;
if (lref != rref &&
((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) &&
ra_noreg(irm->r)) ||
(mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) &&
(rref = lref, ai = air, ra_noreg(irm->r))))) {
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg add = ra_hintalloc(as, rref, dest, RSET_FPR);
Reg right, left = ra_alloc2(as, irm,
rset_exclude(rset_exclude(RSET_FPR, dest), add));
right = (left >> 8); left &= 255;
emit_dnm(as, ai, (dest & 15), (left & 15), (right & 15));
if (dest != add) emit_dm(as, ARMI_VMOV_D, (dest & 15), (add & 15));
return 1;
}
return 0;
}
#endif
/* -- Calls --------------------------------------------------------------- */
/* Generate a call to a C function. */
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
{
uint32_t n, nargs = CCI_NARGS(ci);
int32_t ofs = 0;
#if LJ_SOFTFP
Reg gpr = REGARG_FIRSTGPR;
#else
Reg gpr, fpr = REGARG_FIRSTFPR, fprodd = 0;
#endif
if ((void *)ci->func)
emit_call(as, (void *)ci->func);
#if !LJ_SOFTFP
for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++)
as->cost[gpr] = REGCOST(~0u, ASMREF_L);
gpr = REGARG_FIRSTGPR;
#endif
for (n = 0; n < nargs; n++) { /* Setup args. */
IRRef ref = args[n];
IRIns *ir = IR(ref);
#if !LJ_SOFTFP
if (ref && irt_isfp(ir->t)) {
RegSet of = as->freeset;
Reg src;
if (!LJ_ABI_SOFTFP && !(ci->flags & CCI_VARARG)) {
if (irt_isnum(ir->t)) {
if (fpr <= REGARG_LASTFPR) {
ra_leftov(as, fpr, ref);
fpr++;
continue;
}
} else if (fprodd) { /* Ick. */
src = ra_alloc1(as, ref, RSET_FPR);
emit_dm(as, ARMI_VMOV_S, (fprodd & 15), (src & 15) | 0x00400000);
fprodd = 0;
continue;
} else if (fpr <= REGARG_LASTFPR) {
ra_leftov(as, fpr, ref);
fprodd = fpr++;
continue;
}
/* Workaround to protect argument GPRs from being used for remat. */
as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1);
src = ra_alloc1(as, ref, RSET_FPR); /* May alloc GPR to remat FPR. */
as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1));
fprodd = 0;
goto stackfp;
}
/* Workaround to protect argument GPRs from being used for remat. */
as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1);
src = ra_alloc1(as, ref, RSET_FPR); /* May alloc GPR to remat FPR. */
as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1));
if (irt_isnum(ir->t)) gpr = (gpr+1) & ~1u;
if (gpr <= REGARG_LASTGPR) {
lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */
if (irt_isnum(ir->t)) {
lua_assert(rset_test(as->freeset, gpr+1)); /* Ditto. */
emit_dnm(as, ARMI_VMOV_RR_D, gpr, gpr+1, (src & 15));
gpr += 2;
} else {
emit_dn(as, ARMI_VMOV_R_S, gpr, (src & 15));
gpr++;
}
} else {
stackfp:
if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4;
emit_spstore(as, ir, src, ofs);
ofs += irt_isnum(ir->t) ? 8 : 4;
}
} else
#endif
{
if (gpr <= REGARG_LASTGPR) {
lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */
if (ref) ra_leftov(as, gpr, ref);
gpr++;
} else {
if (ref) {
Reg r = ra_alloc1(as, ref, RSET_GPR);
emit_spstore(as, ir, r, ofs);
}
ofs += 4;
}
}
}
}
/* Setup result reg/sp for call. Evict scratch regs. */
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
RegSet drop = RSET_SCRATCH;
int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t));
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
if (hiop && ra_hasreg((ir+1)->r))
rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */
ra_evictset(as, drop); /* Evictions must be performed first. */
if (ra_used(ir)) {
lua_assert(!irt_ispri(ir->t));
if (!LJ_SOFTFP && irt_isfp(ir->t)) {
if (LJ_ABI_SOFTFP || (ci->flags & (CCI_CASTU64|CCI_VARARG))) {
Reg dest = (ra_dest(as, ir, RSET_FPR) & 15);
if (irt_isnum(ir->t))
emit_dnm(as, ARMI_VMOV_D_RR, RID_RETLO, RID_RETHI, dest);
else
emit_dn(as, ARMI_VMOV_S_R, RID_RET, dest);
} else {
ra_destreg(as, ir, RID_FPRET);
}
} else if (hiop) {
ra_destpair(as, ir);
} else {
ra_destreg(as, ir, RID_RET);
}
}
UNUSED(ci);
}
static void asm_call(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX];
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
asm_collectargs(as, ir, ci, args);
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
static void asm_callx(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX*2];
CCallInfo ci;
IRRef func;
IRIns *irf;
ci.flags = asm_callx_flags(as, ir);
asm_collectargs(as, ir, &ci, args);
asm_setupresult(as, ir, &ci);
func = ir->op2; irf = IR(func);
if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); }
if (irref_isk(func)) { /* Call to constant address. */
ci.func = (ASMFunction)(void *)(irf->i);
} else { /* Need a non-argument register for indirect calls. */
Reg freg = ra_alloc1(as, func, RSET_RANGE(RID_R4, RID_R12+1));
emit_m(as, ARMI_BLXr, freg);
ci.func = (ASMFunction)(void *)0;
}
asm_gencall(as, &ci, args);
}
/* -- Returns ------------------------------------------------------------- */
/* Return to lower frame. Guard that it goes to the right spot. */
static void asm_retf(ASMState *as, IRIns *ir)
{
Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
void *pc = ir_kptr(IR(ir->op2));
int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
as->topslot -= (BCReg)delta;
if ((int32_t)as->topslot < 0) as->topslot = 0;
irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */
/* Need to force a spill on REF_BASE now to update the stack slot. */
emit_lso(as, ARMI_STR, base, RID_SP, ra_spill(as, IR(REF_BASE)));
emit_setgl(as, base, jit_base);
emit_addptr(as, base, -8*delta);
asm_guardcc(as, CC_NE);
emit_nm(as, ARMI_CMP, RID_TMP,
ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base)));
emit_lso(as, ARMI_LDR, RID_TMP, base, -4);
}
/* -- Type conversions ---------------------------------------------------- */
#if !LJ_SOFTFP
static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
{
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_guardcc(as, CC_NE);
emit_d(as, ARMI_VMRS, 0);
emit_dm(as, ARMI_VCMP_D, (tmp & 15), (left & 15));
emit_dm(as, ARMI_VCVT_F64_S32, (tmp & 15), (tmp & 15));
emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15));
emit_dm(as, ARMI_VCVT_S32_F64, (tmp & 15), (left & 15));
}
static void asm_tobit(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_FPR;
Reg left = ra_alloc1(as, ir->op1, allow);
Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left));
Reg tmp = ra_scratch(as, rset_clear(allow, right));
Reg dest = ra_dest(as, ir, RSET_GPR);
emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15));
emit_dnm(as, ARMI_VADD_D, (tmp & 15), (left & 15), (right & 15));
}
#endif
static void asm_conv(ASMState *as, IRIns *ir)
{
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
#if !LJ_SOFTFP
int stfp = (st == IRT_NUM || st == IRT_FLOAT);
#endif
IRRef lref = ir->op1;
/* 64 bit integer conversions are handled by SPLIT. */
lua_assert(!irt_isint64(ir->t) && !(st == IRT_I64 || st == IRT_U64));
#if LJ_SOFTFP
/* FP conversions are handled by SPLIT. */
lua_assert(!irt_isfp(ir->t) && !(st == IRT_NUM || st == IRT_FLOAT));
/* Can't check for same types: SPLIT uses CONV int.int + BXOR for sfp NEG. */
#else
lua_assert(irt_type(ir->t) != st);
if (irt_isfp(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
if (stfp) { /* FP to FP conversion. */
emit_dm(as, st == IRT_NUM ? ARMI_VCVT_F32_F64 : ARMI_VCVT_F64_F32,
(dest & 15), (ra_alloc1(as, lref, RSET_FPR) & 15));
} else { /* Integer to FP conversion. */
Reg left = ra_alloc1(as, lref, RSET_GPR);
ARMIns ai = irt_isfloat(ir->t) ?
(st == IRT_INT ? ARMI_VCVT_F32_S32 : ARMI_VCVT_F32_U32) :
(st == IRT_INT ? ARMI_VCVT_F64_S32 : ARMI_VCVT_F64_U32);
emit_dm(as, ai, (dest & 15), (dest & 15));
emit_dn(as, ARMI_VMOV_S_R, left, (dest & 15));
}
} else if (stfp) { /* FP to integer conversion. */
if (irt_isguard(ir->t)) {
/* Checked conversions are only supported from number to int. */
lua_assert(irt_isint(ir->t) && st == IRT_NUM);
asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
} else {
Reg left = ra_alloc1(as, lref, RSET_FPR);
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
Reg dest = ra_dest(as, ir, RSET_GPR);
ARMIns ai;
emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15));
ai = irt_isint(ir->t) ?
(st == IRT_NUM ? ARMI_VCVT_S32_F64 : ARMI_VCVT_S32_F32) :
(st == IRT_NUM ? ARMI_VCVT_U32_F64 : ARMI_VCVT_U32_F32);
emit_dm(as, ai, (tmp & 15), (left & 15));
}
} else
#endif
{
Reg dest = ra_dest(as, ir, RSET_GPR);
if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
Reg left = ra_alloc1(as, lref, RSET_GPR);
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
if ((as->flags & JIT_F_ARMV6)) {
ARMIns ai = st == IRT_I8 ? ARMI_SXTB :
st == IRT_U8 ? ARMI_UXTB :
st == IRT_I16 ? ARMI_SXTH : ARMI_UXTH;
emit_dm(as, ai, dest, left);
} else if (st == IRT_U8) {
emit_dn(as, ARMI_AND|ARMI_K12|255, dest, left);
} else {
uint32_t shift = st == IRT_I8 ? 24 : 16;
ARMShift sh = st == IRT_U16 ? ARMSH_LSR : ARMSH_ASR;
emit_dm(as, ARMI_MOV|ARMF_SH(sh, shift), dest, RID_TMP);
emit_dm(as, ARMI_MOV|ARMF_SH(ARMSH_LSL, shift), RID_TMP, left);
}
} else { /* Handle 32/32 bit no-op (cast). */
ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */
}
}
}
#if !LJ_SOFTFP && LJ_HASFFI
static void asm_conv64(ASMState *as, IRIns *ir)
{
IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
IRCallID id;
CCallInfo ci;
IRRef args[2];
args[0] = (ir-1)->op1;
args[1] = ir->op1;
if (st == IRT_NUM || st == IRT_FLOAT) {
id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64);
ir--;
} else {
id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64);
}
ci = lj_ir_callinfo[id];
#if !LJ_ABI_SOFTFP
ci.flags |= CCI_VARARG; /* These calls don't use the hard-float ABI! */
#endif
asm_setupresult(as, ir, &ci);
asm_gencall(as, &ci, args);
}
#endif
static void asm_strto(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num];
IRRef args[2];
Reg rlo = 0, rhi = 0, tmp;
int destused = ra_used(ir);
int32_t ofs = 0;
ra_evictset(as, RSET_SCRATCH);
#if LJ_SOFTFP
if (destused) {
if (ra_hasspill(ir->s) && ra_hasspill((ir+1)->s) &&
(ir->s & 1) == 0 && ir->s + 1 == (ir+1)->s) {
int i;
for (i = 0; i < 2; i++) {
Reg r = (ir+i)->r;
if (ra_hasreg(r)) {
ra_free(as, r);
ra_modified(as, r);
emit_spload(as, ir+i, r, sps_scale((ir+i)->s));
}
}
ofs = sps_scale(ir->s);
destused = 0;
} else {
rhi = ra_dest(as, ir+1, RSET_GPR);
rlo = ra_dest(as, ir, rset_exclude(RSET_GPR, rhi));
}
}
asm_guardcc(as, CC_EQ);
if (destused) {
emit_lso(as, ARMI_LDR, rhi, RID_SP, 4);
emit_lso(as, ARMI_LDR, rlo, RID_SP, 0);
}
#else
UNUSED(rhi);
if (destused) {
if (ra_hasspill(ir->s)) {
ofs = sps_scale(ir->s);
destused = 0;
if (ra_hasreg(ir->r)) {
ra_free(as, ir->r);
ra_modified(as, ir->r);
emit_spload(as, ir, ir->r, ofs);
}
} else {
rlo = ra_dest(as, ir, RSET_FPR);
}
}
asm_guardcc(as, CC_EQ);
if (destused)
emit_vlso(as, ARMI_VLDR_D, rlo, RID_SP, 0);
#endif
emit_n(as, ARMI_CMP|ARMI_K12|0, RID_RET); /* Test return status. */
args[0] = ir->op1; /* GCstr *str */
args[1] = ASMREF_TMP1; /* TValue *n */
asm_gencall(as, ci, args);
tmp = ra_releasetmp(as, ASMREF_TMP1);
if (ofs == 0)
emit_dm(as, ARMI_MOV, tmp, RID_SP);
else
emit_opk(as, ARMI_ADD, tmp, RID_SP, ofs, RSET_GPR);
}
/* Get pointer to TValue. */
static void asm_tvptr(ASMState *as, Reg dest, IRRef ref)
{
IRIns *ir = IR(ref);
if (irt_isnum(ir->t)) {
if (irref_isk(ref)) {
/* Use the number constant itself as a TValue. */
ra_allockreg(as, i32ptr(ir_knum(ir)), dest);
} else {
#if LJ_SOFTFP
lua_assert(0);
#else
/* Otherwise force a spill and use the spill slot. */
emit_opk(as, ARMI_ADD, dest, RID_SP, ra_spill(as, ir), RSET_GPR);
#endif
}
} else {
/* Otherwise use [sp] and [sp+4] to hold the TValue. */
RegSet allow = rset_exclude(RSET_GPR, dest);
Reg type;
emit_dm(as, ARMI_MOV, dest, RID_SP);
if (!irt_ispri(ir->t)) {
Reg src = ra_alloc1(as, ref, allow);
emit_lso(as, ARMI_STR, src, RID_SP, 0);
}
if ((ir+1)->o == IR_HIOP)
type = ra_alloc1(as, ref+1, allow);
else
type = ra_allock(as, irt_toitype(ir->t), allow);
emit_lso(as, ARMI_STR, type, RID_SP, 4);
}
}
static void asm_tostr(ASMState *as, IRIns *ir)
{
IRRef args[2];
args[0] = ASMREF_L;
as->gcsteps++;
if (irt_isnum(IR(ir->op1)->t) || (ir+1)->o == IR_HIOP) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
args[1] = ASMREF_TMP1; /* const lua_Number * */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1);
} else {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
args[1] = ir->op1; /* int32_t k */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
}
}
/* -- Memory references --------------------------------------------------- */
static void asm_aref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx, base;
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
uint32_t k = emit_isk12(ARMI_ADD, ofs + 8*IR(ir->op2)->i);
if (k) {
base = ra_alloc1(as, refa, RSET_GPR);
emit_dn(as, ARMI_ADD^k, dest, base);
return;
}
}
base = ra_alloc1(as, ir->op1, RSET_GPR);
idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base));
emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 3), dest, base, idx);
}
/* Inlined hash lookup. Specialized for key type and for const keys.
** The equivalent C code is:
** Node *n = hashkey(t, key);
** do {
** if (lj_obj_equal(&n->key, key)) return &n->val;
** } while ((n = nextnode(n)));
** return niltv(L);
*/
static void asm_href(ASMState *as, IRIns *ir, IROp merge)
{
RegSet allow = RSET_GPR;
int destused = ra_used(ir);
Reg dest = ra_dest(as, ir, allow);
Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
Reg key = 0, keyhi = 0, keynumhi = RID_NONE, tmp = RID_TMP;
IRRef refkey = ir->op2;
IRIns *irkey = IR(refkey);
IRType1 kt = irkey->t;
int32_t k = 0, khi = emit_isk12(ARMI_CMP, irt_toitype(kt));
uint32_t khash;
MCLabel l_end, l_loop;
rset_clear(allow, tab);
if (!irref_isk(refkey) || irt_isstr(kt)) {
#if LJ_SOFTFP
key = ra_alloc1(as, refkey, allow);
rset_clear(allow, key);
if (irkey[1].o == IR_HIOP) {
if (ra_hasreg((irkey+1)->r)) {
keynumhi = (irkey+1)->r;
keyhi = RID_TMP;
ra_noweak(as, keynumhi);
} else {
keyhi = keynumhi = ra_allocref(as, refkey+1, allow);
}
rset_clear(allow, keynumhi);
khi = 0;
}
#else
if (irt_isnum(kt)) {
key = ra_scratch(as, allow);
rset_clear(allow, key);
keyhi = keynumhi = ra_scratch(as, allow);
rset_clear(allow, keyhi);
khi = 0;
} else {
key = ra_alloc1(as, refkey, allow);
rset_clear(allow, key);
}
#endif
} else if (irt_isnum(kt)) {
int32_t val = (int32_t)ir_knum(irkey)->u32.lo;
k = emit_isk12(ARMI_CMP, val);
if (!k) {
key = ra_allock(as, val, allow);
rset_clear(allow, key);
}
val = (int32_t)ir_knum(irkey)->u32.hi;
khi = emit_isk12(ARMI_CMP, val);
if (!khi) {
keyhi = ra_allock(as, val, allow);
rset_clear(allow, keyhi);
}
} else if (!irt_ispri(kt)) {
k = emit_isk12(ARMI_CMP, irkey->i);
if (!k) {
key = ra_alloc1(as, refkey, allow);
rset_clear(allow, key);
}
}
if (!irt_ispri(kt))
tmp = ra_scratchpair(as, allow);
/* Key not found in chain: jump to exit (if merged) or load niltv. */
l_end = emit_label(as);
as->invmcp = NULL;
if (merge == IR_NE)
asm_guardcc(as, CC_AL);
else if (destused)
emit_loada(as, dest, niltvg(J2G(as->J)));
/* Follow hash chain until the end. */
l_loop = --as->mcp;
emit_n(as, ARMI_CMP|ARMI_K12|0, dest);
emit_lso(as, ARMI_LDR, dest, dest, (int32_t)offsetof(Node, next));
/* Type and value comparison. */
if (merge == IR_EQ)
asm_guardcc(as, CC_EQ);
else
emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end);
if (!irt_ispri(kt)) {
emit_nm(as, ARMF_CC(ARMI_CMP, CC_EQ)^k, tmp, key);
emit_nm(as, ARMI_CMP^khi, tmp+1, keyhi);
emit_lsox(as, ARMI_LDRD, tmp, dest, (int32_t)offsetof(Node, key));
} else {
emit_n(as, ARMI_CMP^khi, tmp);
emit_lso(as, ARMI_LDR, tmp, dest, (int32_t)offsetof(Node, key.it));
}
*l_loop = ARMF_CC(ARMI_B, CC_NE) | ((as->mcp-l_loop-2) & 0x00ffffffu);
/* Load main position relative to tab->node into dest. */
khash = irref_isk(refkey) ? ir_khash(irkey) : 1;
if (khash == 0) {
emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node));
} else {
emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 3), dest, dest, tmp);
emit_dnm(as, ARMI_ADD|ARMF_SH(ARMSH_LSL, 1), tmp, tmp, tmp);
if (irt_isstr(kt)) { /* Fetch of str->hash is cheaper than ra_allock. */
emit_dnm(as, ARMI_AND, tmp, tmp+1, RID_TMP);
emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node));
emit_lso(as, ARMI_LDR, tmp+1, key, (int32_t)offsetof(GCstr, hash));
emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask));
} else if (irref_isk(refkey)) {
emit_opk(as, ARMI_AND, tmp, RID_TMP, (int32_t)khash,
rset_exclude(rset_exclude(RSET_GPR, tab), dest));
emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node));
emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask));
} else { /* Must match with hash*() in lj_tab.c. */
if (ra_hasreg(keynumhi)) { /* Canonicalize +-0.0 to 0.0. */
if (keyhi == RID_TMP)
emit_dm(as, ARMF_CC(ARMI_MOV, CC_NE), keyhi, keynumhi);
emit_d(as, ARMF_CC(ARMI_MOV, CC_EQ)|ARMI_K12|0, keyhi);
}
emit_dnm(as, ARMI_AND, tmp, tmp, RID_TMP);
emit_dnm(as, ARMI_SUB|ARMF_SH(ARMSH_ROR, 32-HASH_ROT3), tmp, tmp, tmp+1);
emit_lso(as, ARMI_LDR, dest, tab, (int32_t)offsetof(GCtab, node));
emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_ROR, 32-((HASH_ROT2+HASH_ROT1)&31)),
tmp, tmp+1, tmp);
emit_lso(as, ARMI_LDR, RID_TMP, tab, (int32_t)offsetof(GCtab, hmask));
emit_dnm(as, ARMI_SUB|ARMF_SH(ARMSH_ROR, 32-HASH_ROT1), tmp+1, tmp+1, tmp);
if (ra_hasreg(keynumhi)) {
emit_dnm(as, ARMI_EOR, tmp+1, tmp, key);
emit_dnm(as, ARMI_ORR|ARMI_S, RID_TMP, tmp, key); /* Test for +-0.0. */
emit_dnm(as, ARMI_ADD, tmp, keynumhi, keynumhi);
#if !LJ_SOFTFP
emit_dnm(as, ARMI_VMOV_RR_D, key, keynumhi,
(ra_alloc1(as, refkey, RSET_FPR) & 15));
#endif
} else {
emit_dnm(as, ARMI_EOR, tmp+1, tmp, key);
emit_opk(as, ARMI_ADD, tmp, key, (int32_t)HASH_BIAS,
rset_exclude(rset_exclude(RSET_GPR, tab), key));
}
}
}
}
static void asm_hrefk(ASMState *as, IRIns *ir)
{
IRIns *kslot = IR(ir->op2);
IRIns *irkey = IR(kslot->op1);
int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
int32_t kofs = ofs + (int32_t)offsetof(Node, key);
Reg dest = (ra_used(ir) || ofs > 4095) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
Reg key = RID_NONE, type = RID_TMP, idx = node;
RegSet allow = rset_exclude(RSET_GPR, node);
lua_assert(ofs % sizeof(Node) == 0);
if (ofs > 4095) {
idx = dest;
rset_clear(allow, dest);
kofs = (int32_t)offsetof(Node, key);
} else if (ra_hasreg(dest)) {
emit_opk(as, ARMI_ADD, dest, node, ofs, allow);
}
asm_guardcc(as, CC_NE);
if (!irt_ispri(irkey->t)) {
RegSet even = (as->freeset & allow);
even = even & (even >> 1) & RSET_GPREVEN;
if (even) {
key = ra_scratch(as, even);
if (rset_test(as->freeset, key+1)) {
type = key+1;
ra_modified(as, type);
}
} else {
key = ra_scratch(as, allow);
}
rset_clear(allow, key);
}
rset_clear(allow, type);
if (irt_isnum(irkey->t)) {
emit_opk(as, ARMF_CC(ARMI_CMP, CC_EQ), 0, type,
(int32_t)ir_knum(irkey)->u32.hi, allow);
emit_opk(as, ARMI_CMP, 0, key,
(int32_t)ir_knum(irkey)->u32.lo, allow);
} else {
if (ra_hasreg(key))
emit_opk(as, ARMF_CC(ARMI_CMP, CC_EQ), 0, key, irkey->i, allow);
emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype(irkey->t), type);
}
emit_lso(as, ARMI_LDR, type, idx, kofs+4);
if (ra_hasreg(key)) emit_lso(as, ARMI_LDR, key, idx, kofs);
if (ofs > 4095)
emit_opk(as, ARMI_ADD, dest, node, ofs, RSET_GPR);
}
static void asm_newref(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
IRRef args[3];
if (ir->r == RID_SINK)
return;
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* GCtab *t */
args[2] = ASMREF_TMP1; /* cTValue *key */
asm_setupresult(as, ir, ci); /* TValue * */
asm_gencall(as, ci, args);
asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2);
}
static void asm_uref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
emit_lsptr(as, ARMI_LDR, dest, v);
} else {
Reg uv = ra_scratch(as, RSET_GPR);
Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
if (ir->o == IR_UREFC) {
asm_guardcc(as, CC_NE);
emit_n(as, ARMI_CMP|ARMI_K12|1, RID_TMP);
emit_opk(as, ARMI_ADD, dest, uv,
(int32_t)offsetof(GCupval, tv), RSET_GPR);
emit_lso(as, ARMI_LDRB, RID_TMP, uv, (int32_t)offsetof(GCupval, closed));
} else {
emit_lso(as, ARMI_LDR, dest, uv, (int32_t)offsetof(GCupval, v));
}
emit_lso(as, ARMI_LDR, uv, func,
(int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
}
}
static void asm_fref(ASMState *as, IRIns *ir)
{
UNUSED(as); UNUSED(ir);
lua_assert(!ra_used(ir));
}
static void asm_strref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
IRRef ref = ir->op2, refk = ir->op1;
Reg r;
if (irref_isk(ref)) {
IRRef tmp = refk; refk = ref; ref = tmp;
} else if (!irref_isk(refk)) {
uint32_t k, m = ARMI_K12|sizeof(GCstr);
Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR);
IRIns *irr = IR(ir->op2);
if (ra_hasreg(irr->r)) {
ra_noweak(as, irr->r);
right = irr->r;
} else if (mayfuse(as, irr->op2) &&
irr->o == IR_ADD && irref_isk(irr->op2) &&
(k = emit_isk12(ARMI_ADD,
(int32_t)sizeof(GCstr) + IR(irr->op2)->i))) {
m = k;
right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left));
} else {
right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left));
}
emit_dn(as, ARMI_ADD^m, dest, dest);
emit_dnm(as, ARMI_ADD, dest, left, right);
return;
}
r = ra_alloc1(as, ref, RSET_GPR);
emit_opk(as, ARMI_ADD, dest, r,
sizeof(GCstr) + IR(refk)->i, rset_exclude(RSET_GPR, r));
}
/* -- Loads and stores ---------------------------------------------------- */
static ARMIns asm_fxloadins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: return ARMI_LDRSB;
case IRT_U8: return ARMI_LDRB;
case IRT_I16: return ARMI_LDRSH;
case IRT_U16: return ARMI_LDRH;
case IRT_NUM: lua_assert(!LJ_SOFTFP); return ARMI_VLDR_D;
case IRT_FLOAT: if (!LJ_SOFTFP) return ARMI_VLDR_S;
default: return ARMI_LDR;
}
}
static ARMIns asm_fxstoreins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: case IRT_U8: return ARMI_STRB;
case IRT_I16: case IRT_U16: return ARMI_STRH;
case IRT_NUM: lua_assert(!LJ_SOFTFP); return ARMI_VSTR_D;
case IRT_FLOAT: if (!LJ_SOFTFP) return ARMI_VSTR_S;
default: return ARMI_STR;
}
}
static void asm_fload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx = ra_alloc1(as, ir->op1, RSET_GPR);
ARMIns ai = asm_fxloadins(ir);
int32_t ofs;
if (ir->op2 == IRFL_TAB_ARRAY) {
ofs = asm_fuseabase(as, ir->op1);
if (ofs) { /* Turn the t->array load into an add for colocated arrays. */
emit_dn(as, ARMI_ADD|ARMI_K12|ofs, dest, idx);
return;
}
}
ofs = field_ofs[ir->op2];
if ((ai & 0x04000000))
emit_lso(as, ai, dest, idx, ofs);
else
emit_lsox(as, ai, dest, idx, ofs);
}
static void asm_fstore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
IRIns *irf = IR(ir->op1);
Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src));
int32_t ofs = field_ofs[irf->op2];
ARMIns ai = asm_fxstoreins(ir);
if ((ai & 0x04000000))
emit_lso(as, ai, src, idx, ofs);
else
emit_lsox(as, ai, src, idx, ofs);
}
}
static void asm_xload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir,
(!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR);
lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED));
asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0);
}
static void asm_xstore(ASMState *as, IRIns *ir, int32_t ofs)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1(as, ir->op2,
(!LJ_SOFTFP && irt_isfp(ir->t)) ? RSET_FPR : RSET_GPR);
asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1,
rset_exclude(RSET_GPR, src), ofs);
}
}
static void asm_ahuvload(ASMState *as, IRIns *ir)
{
int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP);
IRType t = hiop ? IRT_NUM : irt_type(ir->t);
Reg dest = RID_NONE, type = RID_NONE, idx;
RegSet allow = RSET_GPR;
int32_t ofs = 0;
if (hiop && ra_used(ir+1)) {
type = ra_dest(as, ir+1, allow);
rset_clear(allow, type);
}
if (ra_used(ir)) {
lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) ||
irt_isint(ir->t) || irt_isaddr(ir->t));
dest = ra_dest(as, ir, (!LJ_SOFTFP && t == IRT_NUM) ? RSET_FPR : allow);
rset_clear(allow, dest);
}
idx = asm_fuseahuref(as, ir->op1, &ofs, allow,
(!LJ_SOFTFP && t == IRT_NUM) ? 1024 : 4096);
if (!hiop || type == RID_NONE) {
rset_clear(allow, idx);
if (ofs < 256 && ra_hasreg(dest) && (dest & 1) == 0 &&
rset_test((as->freeset & allow), dest+1)) {
type = dest+1;
ra_modified(as, type);
} else {
type = RID_TMP;
}
}
asm_guardcc(as, t == IRT_NUM ? CC_HS : CC_NE);
emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype_(t), type);
if (ra_hasreg(dest)) {
#if !LJ_SOFTFP
if (t == IRT_NUM)
emit_vlso(as, ARMI_VLDR_D, dest, idx, ofs);
else
#endif
emit_lso(as, ARMI_LDR, dest, idx, ofs);
}
emit_lso(as, ARMI_LDR, type, idx, ofs+4);
}
static void asm_ahustore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
RegSet allow = RSET_GPR;
Reg idx, src = RID_NONE, type = RID_NONE;
int32_t ofs = 0;
#if !LJ_SOFTFP
if (irt_isnum(ir->t)) {
src = ra_alloc1(as, ir->op2, RSET_FPR);
idx = asm_fuseahuref(as, ir->op1, &ofs, allow, 1024);
emit_vlso(as, ARMI_VSTR_D, src, idx, ofs);
} else
#endif
{
int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP);
if (!irt_ispri(ir->t)) {
src = ra_alloc1(as, ir->op2, allow);
rset_clear(allow, src);
}
if (hiop)
type = ra_alloc1(as, (ir+1)->op2, allow);
else
type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow);
idx = asm_fuseahuref(as, ir->op1, &ofs, rset_exclude(allow, type), 4096);
if (ra_hasreg(src)) emit_lso(as, ARMI_STR, src, idx, ofs);
emit_lso(as, ARMI_STR, type, idx, ofs+4);
}
}
}
static void asm_sload(ASMState *as, IRIns *ir)
{
int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
int hiop = (LJ_SOFTFP && (ir+1)->o == IR_HIOP);
IRType t = hiop ? IRT_NUM : irt_type(ir->t);
Reg dest = RID_NONE, type = RID_NONE, base;
RegSet allow = RSET_GPR;
lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
lua_assert(irt_isguard(ir->t) || !(ir->op2 & IRSLOAD_TYPECHECK));
#if LJ_SOFTFP
lua_assert(!(ir->op2 & IRSLOAD_CONVERT)); /* Handled by LJ_SOFTFP SPLIT. */
if (hiop && ra_used(ir+1)) {
type = ra_dest(as, ir+1, allow);
rset_clear(allow, type);
}
#else
if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(ir->t) && t == IRT_INT) {
dest = ra_scratch(as, RSET_FPR);
asm_tointg(as, ir, dest);
t = IRT_NUM; /* Continue with a regular number type check. */
} else
#endif
if (ra_used(ir)) {
Reg tmp = RID_NONE;
if ((ir->op2 & IRSLOAD_CONVERT))
tmp = ra_scratch(as, t == IRT_INT ? RSET_FPR : RSET_GPR);
lua_assert((LJ_SOFTFP ? 0 : irt_isnum(ir->t)) ||
irt_isint(ir->t) || irt_isaddr(ir->t));
dest = ra_dest(as, ir, (!LJ_SOFTFP && t == IRT_NUM) ? RSET_FPR : allow);
rset_clear(allow, dest);
base = ra_alloc1(as, REF_BASE, allow);
if ((ir->op2 & IRSLOAD_CONVERT)) {
if (t == IRT_INT) {
emit_dn(as, ARMI_VMOV_R_S, dest, (tmp & 15));
emit_dm(as, ARMI_VCVT_S32_F64, (tmp & 15), (tmp & 15));
t = IRT_NUM; /* Check for original type. */
} else {
emit_dm(as, ARMI_VCVT_F64_S32, (dest & 15), (dest & 15));
emit_dn(as, ARMI_VMOV_S_R, tmp, (dest & 15));
t = IRT_INT; /* Check for original type. */
}
dest = tmp;
}
goto dotypecheck;
}
base = ra_alloc1(as, REF_BASE, allow);
dotypecheck:
rset_clear(allow, base);
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
if (ra_noreg(type)) {
if (ofs < 256 && ra_hasreg(dest) && (dest & 1) == 0 &&
rset_test((as->freeset & allow), dest+1)) {
type = dest+1;
ra_modified(as, type);
} else {
type = RID_TMP;
}
}
asm_guardcc(as, t == IRT_NUM ? CC_HS : CC_NE);
emit_n(as, ARMI_CMN|ARMI_K12|-irt_toitype_(t), type);
}
if (ra_hasreg(dest)) {
#if !LJ_SOFTFP
if (t == IRT_NUM) {
if (ofs < 1024) {
emit_vlso(as, ARMI_VLDR_D, dest, base, ofs);
} else {
if (ra_hasreg(type)) emit_lso(as, ARMI_LDR, type, base, ofs+4);
emit_vlso(as, ARMI_VLDR_D, dest, RID_TMP, 0);
emit_opk(as, ARMI_ADD, RID_TMP, base, ofs, allow);
return;
}
} else
#endif
emit_lso(as, ARMI_LDR, dest, base, ofs);
}
if (ra_hasreg(type)) emit_lso(as, ARMI_LDR, type, base, ofs+4);
}
/* -- Allocations --------------------------------------------------------- */
#if LJ_HASFFI
static void asm_cnew(ASMState *as, IRIns *ir)
{
CTState *cts = ctype_ctsG(J2G(as->J));
CTypeID ctypeid = (CTypeID)IR(ir->op1)->i;
CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i;
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
IRRef args[2];
RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
RegSet drop = RSET_SCRATCH;
lua_assert(sz != CTSIZE_INVALID);
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* MSize size */
as->gcsteps++;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop);
if (ra_used(ir))
ra_destreg(as, ir, RID_RET); /* GCcdata * */
/* Initialize immutable cdata object. */
if (ir->o == IR_CNEWI) {
int32_t ofs = sizeof(GCcdata);
lua_assert(sz == 4 || sz == 8);
if (sz == 8) {
ofs += 4; ir++;
lua_assert(ir->o == IR_HIOP);
}
for (;;) {
Reg r = ra_alloc1(as, ir->op2, allow);
emit_lso(as, ARMI_STR, r, RID_RET, ofs);
rset_clear(allow, r);
if (ofs == sizeof(GCcdata)) break;
ofs -= 4; ir--;
}
}
/* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */
{
uint32_t k = emit_isk12(ARMI_MOV, ctypeid);
Reg r = k ? RID_R1 : ra_allock(as, ctypeid, allow);
emit_lso(as, ARMI_STRB, RID_TMP, RID_RET, offsetof(GCcdata, gct));
emit_lsox(as, ARMI_STRH, r, RID_RET, offsetof(GCcdata, ctypeid));
emit_d(as, ARMI_MOV|ARMI_K12|~LJ_TCDATA, RID_TMP);
if (k) emit_d(as, ARMI_MOV^k, RID_R1);
}
asm_gencall(as, ci, args);
ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)),
ra_releasetmp(as, ASMREF_TMP1));
}
#else
#define asm_cnew(as, ir) ((void)0)
#endif
/* -- Write barriers ------------------------------------------------------ */
static void asm_tbar(ASMState *as, IRIns *ir)
{
Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
Reg link = ra_scratch(as, rset_exclude(RSET_GPR, tab));
Reg gr = ra_allock(as, i32ptr(J2G(as->J)),
rset_exclude(rset_exclude(RSET_GPR, tab), link));
Reg mark = RID_TMP;
MCLabel l_end = emit_label(as);
emit_lso(as, ARMI_STR, link, tab, (int32_t)offsetof(GCtab, gclist));
emit_lso(as, ARMI_STRB, mark, tab, (int32_t)offsetof(GCtab, marked));
emit_lso(as, ARMI_STR, tab, gr,
(int32_t)offsetof(global_State, gc.grayagain));
emit_dn(as, ARMI_BIC|ARMI_K12|LJ_GC_BLACK, mark, mark);
emit_lso(as, ARMI_LDR, link, gr,
(int32_t)offsetof(global_State, gc.grayagain));
emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end);
emit_n(as, ARMI_TST|ARMI_K12|LJ_GC_BLACK, mark);
emit_lso(as, ARMI_LDRB, mark, tab, (int32_t)offsetof(GCtab, marked));
}
static void asm_obar(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
IRRef args[2];
MCLabel l_end;
Reg obj, val, tmp;
/* No need for other object barriers (yet). */
lua_assert(IR(ir->op1)->o == IR_UREFC);
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ir->op1; /* TValue *tv */
asm_gencall(as, ci, args);
if ((l_end[-1] >> 28) == CC_AL)
l_end[-1] = ARMF_CC(l_end[-1], CC_NE);
else
emit_branch(as, ARMF_CC(ARMI_B, CC_EQ), l_end);
ra_allockreg(as, i32ptr(J2G(as->J)), ra_releasetmp(as, ASMREF_TMP1));
obj = IR(ir->op1)->r;
tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj));
emit_n(as, ARMF_CC(ARMI_TST, CC_NE)|ARMI_K12|LJ_GC_BLACK, tmp);
emit_n(as, ARMI_TST|ARMI_K12|LJ_GC_WHITES, RID_TMP);
val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj));
emit_lso(as, ARMI_LDRB, tmp, obj,
(int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
emit_lso(as, ARMI_LDRB, RID_TMP, val, (int32_t)offsetof(GChead, marked));
}
/* -- Arithmetic and logic operations ------------------------------------- */
#if !LJ_SOFTFP
static void asm_fparith(ASMState *as, IRIns *ir, ARMIns ai)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
emit_dnm(as, ai, (dest & 15), (left & 15), (right & 15));
}
static void asm_fpunary(ASMState *as, IRIns *ir, ARMIns ai)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR);
emit_dm(as, ai, (dest & 15), (left & 15));
}
static int asm_fpjoin_pow(ASMState *as, IRIns *ir)
{
IRIns *irp = IR(ir->op1);
if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
IRIns *irpp = IR(irp->op1);
if (irpp == ir-2 && irpp->o == IR_FPMATH &&
irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow];
IRRef args[2];
args[0] = irpp->op1;
args[1] = irp->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
return 1;
}
}
return 0;
}
#endif
static int asm_swapops(ASMState *as, IRRef lref, IRRef rref)
{
IRIns *ir;
if (irref_isk(rref))
return 0; /* Don't swap constants to the left. */
if (irref_isk(lref))
return 1; /* But swap constants to the right. */
ir = IR(rref);
if ((ir->o >= IR_BSHL && ir->o <= IR_BROR) ||
(ir->o == IR_ADD && ir->op1 == ir->op2))
return 0; /* Don't swap fusable operands to the left. */
ir = IR(lref);
if ((ir->o >= IR_BSHL && ir->o <= IR_BROR) ||
(ir->o == IR_ADD && ir->op1 == ir->op2))
return 1; /* But swap fusable operands to the right. */
return 0; /* Otherwise don't swap. */
}
static void asm_intop(ASMState *as, IRIns *ir, ARMIns ai)
{
IRRef lref = ir->op1, rref = ir->op2;
Reg left, dest = ra_dest(as, ir, RSET_GPR);
uint32_t m;
if (asm_swapops(as, lref, rref)) {
IRRef tmp = lref; lref = rref; rref = tmp;
if ((ai & ~ARMI_S) == ARMI_SUB || (ai & ~ARMI_S) == ARMI_SBC)
ai ^= (ARMI_SUB^ARMI_RSB);
}
left = ra_hintalloc(as, lref, dest, RSET_GPR);
m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left));
if (irt_isguard(ir->t)) { /* For IR_ADDOV etc. */
asm_guardcc(as, CC_VS);
ai |= ARMI_S;
}
emit_dn(as, ai^m, dest, left);
}
static void asm_intop_s(ASMState *as, IRIns *ir, ARMIns ai)
{
if (as->flagmcp == as->mcp) { /* Drop cmp r, #0. */
as->flagmcp = NULL;
as->mcp++;
ai |= ARMI_S;
}
asm_intop(as, ir, ai);
}
static void asm_bitop(ASMState *as, IRIns *ir, ARMIns ai)
{
if (as->flagmcp == as->mcp) { /* Try to drop cmp r, #0. */
uint32_t cc = (as->mcp[1] >> 28);
as->flagmcp = NULL;
if (cc <= CC_NE) {
as->mcp++;
ai |= ARMI_S;
} else if (cc == CC_GE) {
*++as->mcp ^= ((CC_GE^CC_PL) << 28);
ai |= ARMI_S;
} else if (cc == CC_LT) {
*++as->mcp ^= ((CC_LT^CC_MI) << 28);
ai |= ARMI_S;
} /* else: other conds don't work with bit ops. */
}
if (ir->op2 == 0) {
Reg dest = ra_dest(as, ir, RSET_GPR);
uint32_t m = asm_fuseopm(as, ai, ir->op1, RSET_GPR);
emit_d(as, ai^m, dest);
} else {
/* NYI: Turn BAND !k12 into uxtb, uxth or bfc or shl+shr. */
asm_intop(as, ir, ai);
}
}
static void asm_intneg(ASMState *as, IRIns *ir, ARMIns ai)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
emit_dn(as, ai|ARMI_K12|0, dest, left);
}
/* NYI: use add/shift for MUL(OV) with constants. FOLD only does 2^k. */
static void asm_intmul(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, dest));
Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
Reg tmp = RID_NONE;
/* ARMv5 restriction: dest != left and dest_hi != left. */
if (dest == left && left != right) { left = right; right = dest; }
if (irt_isguard(ir->t)) { /* IR_MULOV */
if (!(as->flags & JIT_F_ARMV6) && dest == left)
tmp = left = ra_scratch(as, rset_exclude(RSET_GPR, left));
asm_guardcc(as, CC_NE);
emit_nm(as, ARMI_TEQ|ARMF_SH(ARMSH_ASR, 31), RID_TMP, dest);
emit_dnm(as, ARMI_SMULL|ARMF_S(right), dest, RID_TMP, left);
} else {
if (!(as->flags & JIT_F_ARMV6) && dest == left) tmp = left = RID_TMP;
emit_nm(as, ARMI_MUL|ARMF_S(right), dest, left);
}
/* Only need this for the dest == left == right case. */
if (ra_hasreg(tmp)) emit_dm(as, ARMI_MOV, tmp, right);
}
static void asm_add(ASMState *as, IRIns *ir)
{
#if !LJ_SOFTFP
if (irt_isnum(ir->t)) {
if (!asm_fusemadd(as, ir, ARMI_VMLA_D, ARMI_VMLA_D))
asm_fparith(as, ir, ARMI_VADD_D);
return;
}
#endif
asm_intop_s(as, ir, ARMI_ADD);
}
static void asm_sub(ASMState *as, IRIns *ir)
{
#if !LJ_SOFTFP
if (irt_isnum(ir->t)) {
if (!asm_fusemadd(as, ir, ARMI_VNMLS_D, ARMI_VMLS_D))
asm_fparith(as, ir, ARMI_VSUB_D);
return;
}
#endif
asm_intop_s(as, ir, ARMI_SUB);
}
static void asm_mul(ASMState *as, IRIns *ir)
{
#if !LJ_SOFTFP
if (irt_isnum(ir->t)) {
asm_fparith(as, ir, ARMI_VMUL_D);
return;
}
#endif
asm_intmul(as, ir);
}
static void asm_neg(ASMState *as, IRIns *ir)
{
#if !LJ_SOFTFP
if (irt_isnum(ir->t)) {
asm_fpunary(as, ir, ARMI_VNEG_D);
return;
}
#endif
asm_intneg(as, ir, ARMI_RSB);
}
static void asm_callid(ASMState *as, IRIns *ir, IRCallID id)
{
const CCallInfo *ci = &lj_ir_callinfo[id];
IRRef args[2];
args[0] = ir->op1;
args[1] = ir->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
#if !LJ_SOFTFP
static void asm_callround(ASMState *as, IRIns *ir, int id)
{
/* The modified regs must match with the *.dasc implementation. */
RegSet drop = RID2RSET(RID_R0)|RID2RSET(RID_R1)|RID2RSET(RID_R2)|
RID2RSET(RID_R3)|RID2RSET(RID_R12);
RegSet of;
Reg dest, src;
ra_evictset(as, drop);
dest = ra_dest(as, ir, RSET_FPR);
emit_dnm(as, ARMI_VMOV_D_RR, RID_RETLO, RID_RETHI, (dest & 15));
emit_call(as, id == IRFPM_FLOOR ? (void *)lj_vm_floor_sf :
id == IRFPM_CEIL ? (void *)lj_vm_ceil_sf :
(void *)lj_vm_trunc_sf);
/* Workaround to protect argument GPRs from being used for remat. */
of = as->freeset;
as->freeset &= ~RSET_RANGE(RID_R0, RID_R1+1);
as->cost[RID_R0] = as->cost[RID_R1] = REGCOST(~0u, ASMREF_L);
src = ra_alloc1(as, ir->op1, RSET_FPR); /* May alloc GPR to remat FPR. */
as->freeset |= (of & RSET_RANGE(RID_R0, RID_R1+1));
emit_dnm(as, ARMI_VMOV_RR_D, RID_R0, RID_R1, (src & 15));
}
#endif
static void asm_bitswap(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
if ((as->flags & JIT_F_ARMV6)) {
emit_dm(as, ARMI_REV, dest, left);
} else {
Reg tmp2 = dest;
if (tmp2 == left)
tmp2 = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, dest), left));
emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_LSR, 8), dest, tmp2, RID_TMP);
emit_dm(as, ARMI_MOV|ARMF_SH(ARMSH_ROR, 8), tmp2, left);
emit_dn(as, ARMI_BIC|ARMI_K12|256*8|255, RID_TMP, RID_TMP);
emit_dnm(as, ARMI_EOR|ARMF_SH(ARMSH_ROR, 16), RID_TMP, left, left);
}
}
static void asm_bitshift(ASMState *as, IRIns *ir, ARMShift sh)
{
if (irref_isk(ir->op2)) { /* Constant shifts. */
/* NYI: Turn SHL+SHR or BAND+SHR into uxtb, uxth or ubfx. */
/* NYI: Turn SHL+ASR into sxtb, sxth or sbfx. */
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
int32_t shift = (IR(ir->op2)->i & 31);
emit_dm(as, ARMI_MOV|ARMF_SH(sh, shift), dest, left);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_dm(as, ARMI_MOV|ARMF_RSH(sh, right), dest, left);
}
}
static void asm_intmin_max(ASMState *as, IRIns *ir, int cc)
{
uint32_t kcmp = 0, kmov = 0;
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
Reg right = 0;
if (irref_isk(ir->op2)) {
kcmp = emit_isk12(ARMI_CMP, IR(ir->op2)->i);
if (kcmp) kmov = emit_isk12(ARMI_MOV, IR(ir->op2)->i);
}
if (!kmov) {
kcmp = 0;
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
}
if (kmov || dest != right) {
emit_dm(as, ARMF_CC(ARMI_MOV, cc)^kmov, dest, right);
cc ^= 1; /* Must use opposite conditions for paired moves. */
} else {
cc ^= (CC_LT^CC_GT); /* Otherwise may swap CC_LT <-> CC_GT. */
}
if (dest != left) emit_dm(as, ARMF_CC(ARMI_MOV, cc), dest, left);
emit_nm(as, ARMI_CMP^kcmp, left, right);
}
#if LJ_SOFTFP
static void asm_sfpmin_max(ASMState *as, IRIns *ir, int cc)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp];
RegSet drop = RSET_SCRATCH;
Reg r;
IRRef args[4];
args[0] = ir->op1; args[1] = (ir+1)->op1;
args[2] = ir->op2; args[3] = (ir+1)->op2;
/* __aeabi_cdcmple preserves r0-r3. */
if (ra_hasreg(ir->r)) rset_clear(drop, ir->r);
if (ra_hasreg((ir+1)->r)) rset_clear(drop, (ir+1)->r);
if (!rset_test(as->freeset, RID_R2) &&
regcost_ref(as->cost[RID_R2]) == args[2]) rset_clear(drop, RID_R2);
if (!rset_test(as->freeset, RID_R3) &&
regcost_ref(as->cost[RID_R3]) == args[3]) rset_clear(drop, RID_R3);
ra_evictset(as, drop);
ra_destpair(as, ir);
emit_dm(as, ARMF_CC(ARMI_MOV, cc), RID_RETHI, RID_R3);
emit_dm(as, ARMF_CC(ARMI_MOV, cc), RID_RETLO, RID_R2);
emit_call(as, (void *)ci->func);
for (r = RID_R0; r <= RID_R3; r++)
ra_leftov(as, r, args[r-RID_R0]);
}
#else
static void asm_fpmin_max(ASMState *as, IRIns *ir, int cc)
{
Reg dest = (ra_dest(as, ir, RSET_FPR) & 15);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = ((left >> 8) & 15); left &= 15;
if (dest != left) emit_dm(as, ARMF_CC(ARMI_VMOV_D, cc^1), dest, left);
if (dest != right) emit_dm(as, ARMF_CC(ARMI_VMOV_D, cc), dest, right);
emit_d(as, ARMI_VMRS, 0);
emit_dm(as, ARMI_VCMP_D, left, right);
}
#endif
static void asm_min_max(ASMState *as, IRIns *ir, int cc, int fcc)
{
#if LJ_SOFTFP
UNUSED(fcc);
#else
if (irt_isnum(ir->t))
asm_fpmin_max(as, ir, fcc);
else
#endif
asm_intmin_max(as, ir, cc);
}
/* -- Comparisons --------------------------------------------------------- */
/* Map of comparisons to flags. ORDER IR. */
static const uint8_t asm_compmap[IR_ABC+1] = {
/* op FP swp int cc FP cc */
/* LT */ CC_GE + (CC_HS << 4),
/* GE x */ CC_LT + (CC_HI << 4),
/* LE */ CC_GT + (CC_HI << 4),
/* GT x */ CC_LE + (CC_HS << 4),
/* ULT x */ CC_HS + (CC_LS << 4),
/* UGE */ CC_LO + (CC_LO << 4),
/* ULE x */ CC_HI + (CC_LO << 4),
/* UGT */ CC_LS + (CC_LS << 4),
/* EQ */ CC_NE + (CC_NE << 4),
/* NE */ CC_EQ + (CC_EQ << 4),
/* ABC */ CC_LS + (CC_LS << 4) /* Same as UGT. */
};
#if LJ_SOFTFP
/* FP comparisons. */
static void asm_sfpcomp(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_softfp_cmp];
RegSet drop = RSET_SCRATCH;
Reg r;
IRRef args[4];
int swp = (((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1) << 1);
args[swp^0] = ir->op1; args[swp^1] = (ir+1)->op1;
args[swp^2] = ir->op2; args[swp^3] = (ir+1)->op2;
/* __aeabi_cdcmple preserves r0-r3. This helps to reduce spills. */
for (r = RID_R0; r <= RID_R3; r++)
if (!rset_test(as->freeset, r) &&
regcost_ref(as->cost[r]) == args[r-RID_R0]) rset_clear(drop, r);
ra_evictset(as, drop);
asm_guardcc(as, (asm_compmap[ir->o] >> 4));
emit_call(as, (void *)ci->func);
for (r = RID_R0; r <= RID_R3; r++)
ra_leftov(as, r, args[r-RID_R0]);
}
#else
/* FP comparisons. */
static void asm_fpcomp(ASMState *as, IRIns *ir)
{
Reg left, right;
ARMIns ai;
int swp = ((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1);
if (!swp && irref_isk(ir->op2) && ir_knum(IR(ir->op2))->u64 == 0) {
left = (ra_alloc1(as, ir->op1, RSET_FPR) & 15);
right = 0;
ai = ARMI_VCMPZ_D;
} else {
left = ra_alloc2(as, ir, RSET_FPR);
if (swp) {
right = (left & 15); left = ((left >> 8) & 15);
} else {
right = ((left >> 8) & 15); left &= 15;
}
ai = ARMI_VCMP_D;
}
asm_guardcc(as, (asm_compmap[ir->o] >> 4));
emit_d(as, ARMI_VMRS, 0);
emit_dm(as, ai, left, right);
}
#endif
/* Integer comparisons. */
static void asm_intcomp(ASMState *as, IRIns *ir)
{
ARMCC cc = (asm_compmap[ir->o] & 15);
IRRef lref = ir->op1, rref = ir->op2;
Reg left;
uint32_t m;
int cmpprev0 = 0;
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
if (asm_swapops(as, lref, rref)) {
Reg tmp = lref; lref = rref; rref = tmp;
if (cc >= CC_GE) cc ^= 7; /* LT <-> GT, LE <-> GE */
else if (cc > CC_NE) cc ^= 11; /* LO <-> HI, LS <-> HS */
}
if (irref_isk(rref) && IR(rref)->i == 0) {
IRIns *irl = IR(lref);
cmpprev0 = (irl+1 == ir);
/* Combine comp(BAND(left, right), 0) into tst left, right. */
if (cmpprev0 && irl->o == IR_BAND && !ra_used(irl)) {
IRRef blref = irl->op1, brref = irl->op2;
uint32_t m2 = 0;
Reg bleft;
if (asm_swapops(as, blref, brref)) {
Reg tmp = blref; blref = brref; brref = tmp;
}
if (irref_isk(brref)) {
m2 = emit_isk12(ARMI_AND, IR(brref)->i);
if ((m2 & (ARMI_AND^ARMI_BIC)))
goto notst; /* Not beneficial if we miss a constant operand. */
}
if (cc == CC_GE) cc = CC_PL;
else if (cc == CC_LT) cc = CC_MI;
else if (cc > CC_NE) goto notst; /* Other conds don't work with tst. */
bleft = ra_alloc1(as, blref, RSET_GPR);
if (!m2) m2 = asm_fuseopm(as, 0, brref, rset_exclude(RSET_GPR, bleft));
asm_guardcc(as, cc);
emit_n(as, ARMI_TST^m2, bleft);
return;
}
}
notst:
left = ra_alloc1(as, lref, RSET_GPR);
m = asm_fuseopm(as, ARMI_CMP, rref, rset_exclude(RSET_GPR, left));
asm_guardcc(as, cc);
emit_n(as, ARMI_CMP^m, left);
/* Signed comparison with zero and referencing previous ins? */
if (cmpprev0 && (cc <= CC_NE || cc >= CC_GE))
as->flagmcp = as->mcp; /* Allow elimination of the compare. */
}
#if LJ_HASFFI
/* 64 bit integer comparisons. */
static void asm_int64comp(ASMState *as, IRIns *ir)
{
int signedcomp = (ir->o <= IR_GT);
ARMCC cclo, cchi;
Reg leftlo, lefthi;
uint32_t mlo, mhi;
RegSet allow = RSET_GPR, oldfree;
/* Always use unsigned comparison for loword. */
cclo = asm_compmap[ir->o + (signedcomp ? 4 : 0)] & 15;
leftlo = ra_alloc1(as, ir->op1, allow);
oldfree = as->freeset;
mlo = asm_fuseopm(as, ARMI_CMP, ir->op2, rset_clear(allow, leftlo));
allow &= ~(oldfree & ~as->freeset); /* Update for allocs of asm_fuseopm. */
/* Use signed or unsigned comparison for hiword. */
cchi = asm_compmap[ir->o] & 15;
lefthi = ra_alloc1(as, (ir+1)->op1, allow);
mhi = asm_fuseopm(as, ARMI_CMP, (ir+1)->op2, rset_clear(allow, lefthi));
/* All register allocations must be performed _before_ this point. */
if (signedcomp) {
MCLabel l_around = emit_label(as);
asm_guardcc(as, cclo);
emit_n(as, ARMI_CMP^mlo, leftlo);
emit_branch(as, ARMF_CC(ARMI_B, CC_NE), l_around);
if (cchi == CC_GE || cchi == CC_LE) cchi ^= 6; /* GE -> GT, LE -> LT */
asm_guardcc(as, cchi);
} else {
asm_guardcc(as, cclo);
emit_n(as, ARMF_CC(ARMI_CMP, CC_EQ)^mlo, leftlo);
}
emit_n(as, ARMI_CMP^mhi, lefthi);
}
#endif
/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
static void asm_hiop(ASMState *as, IRIns *ir)
{
#if LJ_HASFFI || LJ_SOFTFP
/* HIOP is marked as a store because it needs its own DCE logic. */
int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
if ((ir-1)->o <= IR_NE) { /* 64 bit integer or FP comparisons. ORDER IR. */
as->curins--; /* Always skip the loword comparison. */
#if LJ_SOFTFP
if (!irt_isint(ir->t)) {
asm_sfpcomp(as, ir-1);
return;
}
#endif
#if LJ_HASFFI
asm_int64comp(as, ir-1);
#endif
return;
#if LJ_SOFTFP
} else if ((ir-1)->o == IR_MIN || (ir-1)->o == IR_MAX) {
as->curins--; /* Always skip the loword min/max. */
if (uselo || usehi)
asm_sfpmin_max(as, ir-1, (ir-1)->o == IR_MIN ? CC_HI : CC_LO);
return;
#elif LJ_HASFFI
} else if ((ir-1)->o == IR_CONV) {
as->curins--; /* Always skip the CONV. */
if (usehi || uselo)
asm_conv64(as, ir);
return;
#endif
} else if ((ir-1)->o == IR_XSTORE) {
if ((ir-1)->r != RID_SINK)
asm_xstore(as, ir, 4);
return;
}
if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
switch ((ir-1)->o) {
#if LJ_HASFFI
case IR_ADD:
as->curins--;
asm_intop(as, ir, ARMI_ADC);
asm_intop(as, ir-1, ARMI_ADD|ARMI_S);
break;
case IR_SUB:
as->curins--;
asm_intop(as, ir, ARMI_SBC);
asm_intop(as, ir-1, ARMI_SUB|ARMI_S);
break;
case IR_NEG:
as->curins--;
asm_intneg(as, ir, ARMI_RSC);
asm_intneg(as, ir-1, ARMI_RSB|ARMI_S);
break;
#endif
#if LJ_SOFTFP
case IR_SLOAD: case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
case IR_STRTO:
if (!uselo)
ra_allocref(as, ir->op1, RSET_GPR); /* Mark lo op as used. */
break;
#endif
case IR_CALLN:
case IR_CALLS:
case IR_CALLXS:
if (!uselo)
ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */
break;
#if LJ_SOFTFP
case IR_ASTORE: case IR_HSTORE: case IR_USTORE: case IR_TOSTR:
#endif
case IR_CNEWI:
/* Nothing to do here. Handled by lo op itself. */
break;
default: lua_assert(0); break;
}
#else
UNUSED(as); UNUSED(ir); lua_assert(0);
#endif
}
/* -- Stack handling ------------------------------------------------------ */
/* Check Lua stack size for overflow. Use exit handler as fallback. */
static void asm_stack_check(ASMState *as, BCReg topslot,
IRIns *irp, RegSet allow, ExitNo exitno)
{
Reg pbase;
uint32_t k;
if (irp) {
if (!ra_hasspill(irp->s)) {
pbase = irp->r;
lua_assert(ra_hasreg(pbase));
} else if (allow) {
pbase = rset_pickbot(allow);
} else {
pbase = RID_RET;
emit_lso(as, ARMI_LDR, RID_RET, RID_SP, 0); /* Restore temp. register. */
}
} else {
pbase = RID_BASE;
}
emit_branch(as, ARMF_CC(ARMI_BL, CC_LS), exitstub_addr(as->J, exitno));
k = emit_isk12(0, (int32_t)(8*topslot));
lua_assert(k);
emit_n(as, ARMI_CMP^k, RID_TMP);
emit_dnm(as, ARMI_SUB, RID_TMP, RID_TMP, pbase);
emit_lso(as, ARMI_LDR, RID_TMP, RID_TMP,
(int32_t)offsetof(lua_State, maxstack));
if (irp) { /* Must not spill arbitrary registers in head of side trace. */
int32_t i = i32ptr(&J2G(as->J)->jit_L);
if (ra_hasspill(irp->s))
emit_lso(as, ARMI_LDR, pbase, RID_SP, sps_scale(irp->s));
emit_lso(as, ARMI_LDR, RID_TMP, RID_TMP, (i & 4095));
if (ra_hasspill(irp->s) && !allow)
emit_lso(as, ARMI_STR, RID_RET, RID_SP, 0); /* Save temp. register. */
emit_loadi(as, RID_TMP, (i & ~4095));
} else {
emit_getgl(as, RID_TMP, jit_L);
}
}
/* Restore Lua stack from on-trace state. */
static void asm_stack_restore(ASMState *as, SnapShot *snap)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1];
MSize n, nent = snap->nent;
/* Store the value of all modified slots to the Lua stack. */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
BCReg s = snap_slot(sn);
int32_t ofs = 8*((int32_t)s-1);
IRRef ref = snap_ref(sn);
IRIns *ir = IR(ref);
if ((sn & SNAP_NORESTORE))
continue;
if (irt_isnum(ir->t)) {
#if LJ_SOFTFP
RegSet odd = rset_exclude(RSET_GPRODD, RID_BASE);
Reg tmp;
lua_assert(irref_isk(ref)); /* LJ_SOFTFP: must be a number constant. */
tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.lo,
rset_exclude(RSET_GPREVEN, RID_BASE));
emit_lso(as, ARMI_STR, tmp, RID_BASE, ofs);
if (rset_test(as->freeset, tmp+1)) odd = RID2RSET(tmp+1);
tmp = ra_allock(as, (int32_t)ir_knum(ir)->u32.hi, odd);
emit_lso(as, ARMI_STR, tmp, RID_BASE, ofs+4);
#else
Reg src = ra_alloc1(as, ref, RSET_FPR);
emit_vlso(as, ARMI_VSTR_D, src, RID_BASE, ofs);
#endif
} else {
RegSet odd = rset_exclude(RSET_GPRODD, RID_BASE);
Reg type;
lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t));
if (!irt_ispri(ir->t)) {
Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPREVEN, RID_BASE));
emit_lso(as, ARMI_STR, src, RID_BASE, ofs);
if (rset_test(as->freeset, src+1)) odd = RID2RSET(src+1);
}
if ((sn & (SNAP_CONT|SNAP_FRAME))) {
if (s == 0) continue; /* Do not overwrite link to previous frame. */
type = ra_allock(as, (int32_t)(*flinks--), odd);
#if LJ_SOFTFP
} else if ((sn & SNAP_SOFTFPNUM)) {
type = ra_alloc1(as, ref+1, rset_exclude(RSET_GPRODD, RID_BASE));
#endif
} else {
type = ra_allock(as, (int32_t)irt_toitype(ir->t), odd);
}
emit_lso(as, ARMI_STR, type, RID_BASE, ofs+4);
}
checkmclim(as);
}
lua_assert(map + nent == flinks);
}
/* -- GC handling --------------------------------------------------------- */
/* Check GC threshold and do one or more GC steps. */
static void asm_gc_check(ASMState *as)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
IRRef args[2];
MCLabel l_end;
Reg tmp1, tmp2;
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
/* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
emit_n(as, ARMI_CMP|ARMI_K12|0, RID_RET);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ASMREF_TMP2; /* MSize steps */
asm_gencall(as, ci, args);
tmp1 = ra_releasetmp(as, ASMREF_TMP1);
tmp2 = ra_releasetmp(as, ASMREF_TMP2);
emit_loadi(as, tmp2, as->gcsteps);
/* Jump around GC step if GC total < GC threshold. */
emit_branch(as, ARMF_CC(ARMI_B, CC_LS), l_end);
emit_nm(as, ARMI_CMP, RID_TMP, tmp2);
emit_lso(as, ARMI_LDR, tmp2, tmp1,
(int32_t)offsetof(global_State, gc.threshold));
emit_lso(as, ARMI_LDR, RID_TMP, tmp1,
(int32_t)offsetof(global_State, gc.total));
ra_allockreg(as, i32ptr(J2G(as->J)), tmp1);
as->gcsteps = 0;
checkmclim(as);
}
/* -- Loop handling ------------------------------------------------------- */
/* Fixup the loop branch. */
static void asm_loop_fixup(ASMState *as)
{
MCode *p = as->mctop;
MCode *target = as->mcp;
if (as->loopinv) { /* Inverted loop branch? */
/* asm_guardcc already inverted the bcc and patched the final bl. */
p[-2] |= ((uint32_t)(target-p) & 0x00ffffffu);
} else {
p[-1] = ARMI_B | ((uint32_t)((target-p)-1) & 0x00ffffffu);
}
}
/* -- Head of trace ------------------------------------------------------- */
/* Reload L register from g->jit_L. */
static void asm_head_lreg(ASMState *as)
{
IRIns *ir = IR(ASMREF_L);
if (ra_used(ir)) {
Reg r = ra_dest(as, ir, RSET_GPR);
emit_getgl(as, r, jit_L);
ra_evictk(as);
}
}
/* Coalesce BASE register for a root trace. */
static void asm_head_root_base(ASMState *as)
{
IRIns *ir;
asm_head_lreg(as);
ir = IR(REF_BASE);
if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t)))
ra_spill(as, ir);
ra_destreg(as, ir, RID_BASE);
}
/* Coalesce BASE register for a side trace. */
static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
{
IRIns *ir;
asm_head_lreg(as);
ir = IR(REF_BASE);
if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t)))
ra_spill(as, ir);
if (ra_hasspill(irp->s)) {
rset_clear(allow, ra_dest(as, ir, allow));
} else {
Reg r = irp->r;
lua_assert(ra_hasreg(r));
rset_clear(allow, r);
if (r != ir->r && !rset_test(as->freeset, r))
ra_restore(as, regcost_ref(as->cost[r]));
ra_destreg(as, ir, r);
}
return allow;
}
/* -- Tail of trace ------------------------------------------------------- */
/* Fixup the tail code. */
static void asm_tail_fixup(ASMState *as, TraceNo lnk)
{
MCode *p = as->mctop;
MCode *target;
int32_t spadj = as->T->spadjust;
if (spadj == 0) {
as->mctop = --p;
} else {
/* Patch stack adjustment. */
uint32_t k = emit_isk12(ARMI_ADD, spadj);
lua_assert(k);
p[-2] = (ARMI_ADD^k) | ARMF_D(RID_SP) | ARMF_N(RID_SP);
}
/* Patch exit branch. */
target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp;
p[-1] = ARMI_B|(((target-p)-1)&0x00ffffffu);
}
/* Prepare tail of code. */
static void asm_tail_prep(ASMState *as)
{
MCode *p = as->mctop - 1; /* Leave room for exit branch. */
if (as->loopref) {
as->invmcp = as->mcp = p;
} else {
as->mcp = p-1; /* Leave room for stack pointer adjustment. */
as->invmcp = NULL;
}
*p = 0; /* Prevent load/store merging. */
}
/* -- Instruction dispatch ------------------------------------------------ */
/* Assemble a single instruction. */
static void asm_ir(ASMState *as, IRIns *ir)
{
switch ((IROp)ir->o) {
/* Miscellaneous ops. */
case IR_LOOP: asm_loop(as); break;
case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
case IR_USE:
ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
case IR_PHI: asm_phi(as, ir); break;
case IR_HIOP: asm_hiop(as, ir); break;
case IR_GCSTEP: asm_gcstep(as, ir); break;
/* Guarded assertions. */
case IR_EQ: case IR_NE:
if ((ir-1)->o == IR_HREF && ir->op1 == as->curins-1) {
as->curins--;
asm_href(as, ir-1, (IROp)ir->o);
break;
}
/* fallthrough */
case IR_LT: case IR_GE: case IR_LE: case IR_GT:
case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
case IR_ABC:
#if !LJ_SOFTFP
if (irt_isnum(ir->t)) { asm_fpcomp(as, ir); break; }
#endif
asm_intcomp(as, ir);
break;
case IR_RETF: asm_retf(as, ir); break;
/* Bit ops. */
case IR_BNOT: asm_bitop(as, ir, ARMI_MVN); break;
case IR_BSWAP: asm_bitswap(as, ir); break;
case IR_BAND: asm_bitop(as, ir, ARMI_AND); break;
case IR_BOR: asm_bitop(as, ir, ARMI_ORR); break;
case IR_BXOR: asm_bitop(as, ir, ARMI_EOR); break;
case IR_BSHL: asm_bitshift(as, ir, ARMSH_LSL); break;
case IR_BSHR: asm_bitshift(as, ir, ARMSH_LSR); break;
case IR_BSAR: asm_bitshift(as, ir, ARMSH_ASR); break;
case IR_BROR: asm_bitshift(as, ir, ARMSH_ROR); break;
case IR_BROL: lua_assert(0); break;
/* Arithmetic ops. */
case IR_ADD: case IR_ADDOV: asm_add(as, ir); break;
case IR_SUB: case IR_SUBOV: asm_sub(as, ir); break;
case IR_MUL: case IR_MULOV: asm_mul(as, ir); break;
case IR_MOD: asm_callid(as, ir, IRCALL_lj_vm_modi); break;
case IR_NEG: asm_neg(as, ir); break;
#if LJ_SOFTFP
case IR_DIV: case IR_POW: case IR_ABS:
case IR_ATAN2: case IR_LDEXP: case IR_FPMATH: case IR_TOBIT:
lua_assert(0); /* Unused for LJ_SOFTFP. */
break;
#else
case IR_DIV: asm_fparith(as, ir, ARMI_VDIV_D); break;
case IR_POW: asm_callid(as, ir, IRCALL_lj_vm_powi); break;
case IR_ABS: asm_fpunary(as, ir, ARMI_VABS_D); break;
case IR_ATAN2: asm_callid(as, ir, IRCALL_atan2); break;
case IR_LDEXP: asm_callid(as, ir, IRCALL_ldexp); break;
case IR_FPMATH:
if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir))
break;
if (ir->op2 <= IRFPM_TRUNC)
asm_callround(as, ir, ir->op2);
else if (ir->op2 == IRFPM_SQRT)
asm_fpunary(as, ir, ARMI_VSQRT_D);
else
asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2);
break;
case IR_TOBIT: asm_tobit(as, ir); break;
#endif
case IR_MIN: asm_min_max(as, ir, CC_GT, CC_HI); break;
case IR_MAX: asm_min_max(as, ir, CC_LT, CC_LO); break;
/* Memory references. */
case IR_AREF: asm_aref(as, ir); break;
case IR_HREF: asm_href(as, ir, 0); break;
case IR_HREFK: asm_hrefk(as, ir); break;
case IR_NEWREF: asm_newref(as, ir); break;
case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
case IR_FREF: asm_fref(as, ir); break;
case IR_STRREF: asm_strref(as, ir); break;
/* Loads and stores. */
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
asm_ahuvload(as, ir);
break;
case IR_FLOAD: asm_fload(as, ir); break;
case IR_XLOAD: asm_xload(as, ir); break;
case IR_SLOAD: asm_sload(as, ir); break;
case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
case IR_FSTORE: asm_fstore(as, ir); break;
case IR_XSTORE: asm_xstore(as, ir, 0); break;
/* Allocations. */
case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
case IR_TNEW: asm_tnew(as, ir); break;
case IR_TDUP: asm_tdup(as, ir); break;
case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
/* Write barriers. */
case IR_TBAR: asm_tbar(as, ir); break;
case IR_OBAR: asm_obar(as, ir); break;
/* Type conversions. */
case IR_CONV: asm_conv(as, ir); break;
case IR_TOSTR: asm_tostr(as, ir); break;
case IR_STRTO: asm_strto(as, ir); break;
/* Calls. */
case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
case IR_CALLXS: asm_callx(as, ir); break;
case IR_CARG: break;
default:
setintV(&as->J->errinfo, ir->o);
lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
break;
}
}
/* -- Trace setup --------------------------------------------------------- */
/* Ensure there are enough stack slots for call arguments. */
static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
IRRef args[CCI_NARGS_MAX*2];
uint32_t i, nargs = (int)CCI_NARGS(ci);
int nslots = 0, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR, fprodd = 0;
asm_collectargs(as, ir, ci, args);
for (i = 0; i < nargs; i++) {
if (!LJ_SOFTFP && args[i] && irt_isfp(IR(args[i])->t)) {
if (!LJ_ABI_SOFTFP && !(ci->flags & CCI_VARARG)) {
if (irt_isnum(IR(args[i])->t)) {
if (nfpr > 0) nfpr--;
else fprodd = 0, nslots = (nslots + 3) & ~1;
} else {
if (fprodd) fprodd--;
else if (nfpr > 0) fprodd = 1, nfpr--;
else nslots++;
}
} else if (irt_isnum(IR(args[i])->t)) {
ngpr &= ~1;
if (ngpr > 0) ngpr -= 2; else nslots += 2;
} else {
if (ngpr > 0) ngpr--; else nslots++;
}
} else {
if (ngpr > 0) ngpr--; else nslots++;
}
}
if (nslots > as->evenspill) /* Leave room for args in stack slots. */
as->evenspill = nslots;
return REGSP_HINT(RID_RET);
}
static void asm_setup_target(ASMState *as)
{
/* May need extra exit for asm_stack_check on side traces. */
asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0));
}
/* -- Trace patching ------------------------------------------------------ */
/* Patch exit jumps of existing machine code to a new target. */
void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
{
MCode *p = T->mcode;
MCode *pe = (MCode *)((char *)p + T->szmcode);
MCode *cstart = NULL, *cend = p;
MCode *mcarea = lj_mcode_patch(J, p, 0);
MCode *px = exitstub_addr(J, exitno) - 2;
for (; p < pe; p++) {
/* Look for bl_cc exitstub, replace with b_cc target. */
uint32_t ins = *p;
if ((ins & 0x0f000000u) == 0x0b000000u && ins < 0xf0000000u &&
((ins ^ (px-p)) & 0x00ffffffu) == 0) {
*p = (ins & 0xfe000000u) | (((target-p)-2) & 0x00ffffffu);
cend = p+1;
if (!cstart) cstart = p;
}
}
lua_assert(cstart != NULL);
lj_mcode_sync(cstart, cend);
lj_mcode_patch(J, mcarea, 1);
}