1
0
Fork 0
Aegisub/subprojects/luajit/src/lj_asm_mips.h

1973 lines
64 KiB
C

/*
** MIPS IR assembler (SSA IR -> machine code).
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
*/
/* -- Register allocator extensions --------------------------------------- */
/* Allocate a register with a hint. */
static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow)
{
Reg r = IR(ref)->r;
if (ra_noreg(r)) {
if (!ra_hashint(r) && !iscrossref(as, ref))
ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */
r = ra_allocref(as, ref, allow);
}
ra_noweak(as, r);
return r;
}
/* Allocate a register or RID_ZERO. */
static Reg ra_alloc1z(ASMState *as, IRRef ref, RegSet allow)
{
Reg r = IR(ref)->r;
if (ra_noreg(r)) {
if (!(allow & RSET_FPR) && irref_isk(ref) && IR(ref)->i == 0)
return RID_ZERO;
r = ra_allocref(as, ref, allow);
} else {
ra_noweak(as, r);
}
return r;
}
/* Allocate two source registers for three-operand instructions. */
static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow)
{
IRIns *irl = IR(ir->op1), *irr = IR(ir->op2);
Reg left = irl->r, right = irr->r;
if (ra_hasreg(left)) {
ra_noweak(as, left);
if (ra_noreg(right))
right = ra_alloc1z(as, ir->op2, rset_exclude(allow, left));
else
ra_noweak(as, right);
} else if (ra_hasreg(right)) {
ra_noweak(as, right);
left = ra_alloc1z(as, ir->op1, rset_exclude(allow, right));
} else if (ra_hashint(right)) {
right = ra_alloc1z(as, ir->op2, allow);
left = ra_alloc1z(as, ir->op1, rset_exclude(allow, right));
} else {
left = ra_alloc1z(as, ir->op1, allow);
right = ra_alloc1z(as, ir->op2, rset_exclude(allow, left));
}
return left | (right << 8);
}
/* -- Guard handling ------------------------------------------------------ */
/* Need some spare long-range jump slots, for out-of-range branches. */
#define MIPS_SPAREJUMP 4
/* Setup spare long-range jump slots per mcarea. */
static void asm_sparejump_setup(ASMState *as)
{
MCode *mxp = as->mcbot;
/* Assumes sizeof(MCLink) == 8. */
if (((uintptr_t)mxp & (LJ_PAGESIZE-1)) == 8) {
lua_assert(MIPSI_NOP == 0);
memset(mxp+2, 0, MIPS_SPAREJUMP*8);
mxp += MIPS_SPAREJUMP*2;
lua_assert(mxp < as->mctop);
lj_mcode_sync(as->mcbot, mxp);
lj_mcode_commitbot(as->J, mxp);
as->mcbot = mxp;
as->mclim = as->mcbot + MCLIM_REDZONE;
}
}
/* Setup exit stub after the end of each trace. */
static void asm_exitstub_setup(ASMState *as)
{
MCode *mxp = as->mctop;
/* sw TMP, 0(sp); j ->vm_exit_handler; li TMP, traceno */
*--mxp = MIPSI_LI|MIPSF_T(RID_TMP)|as->T->traceno;
*--mxp = MIPSI_J|((((uintptr_t)(void *)lj_vm_exit_handler)>>2)&0x03ffffffu);
lua_assert(((uintptr_t)mxp ^ (uintptr_t)(void *)lj_vm_exit_handler)>>28 == 0);
*--mxp = MIPSI_SW|MIPSF_T(RID_TMP)|MIPSF_S(RID_SP)|0;
as->mctop = mxp;
}
/* Keep this in-sync with exitstub_trace_addr(). */
#define asm_exitstub_addr(as) ((as)->mctop)
/* Emit conditional branch to exit for guard. */
static void asm_guard(ASMState *as, MIPSIns mi, Reg rs, Reg rt)
{
MCode *target = asm_exitstub_addr(as);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->invmcp = NULL;
as->loopinv = 1;
as->mcp = p+1;
mi = mi ^ ((mi>>28) == 1 ? 0x04000000u : 0x00010000u); /* Invert cond. */
target = p; /* Patch target later in asm_loop_fixup. */
}
emit_ti(as, MIPSI_LI, RID_TMP, as->snapno);
emit_branch(as, mi, rs, rt, target);
}
/* -- Operand fusion ------------------------------------------------------ */
/* Limit linear search to this distance. Avoids O(n^2) behavior. */
#define CONFLICT_SEARCH_LIM 31
/* Check if there's no conflicting instruction between curins and ref. */
static int noconflict(ASMState *as, IRRef ref, IROp conflict)
{
IRIns *ir = as->ir;
IRRef i = as->curins;
if (i > ref + CONFLICT_SEARCH_LIM)
return 0; /* Give up, ref is too far away. */
while (--i > ref)
if (ir[i].o == conflict)
return 0; /* Conflict found. */
return 1; /* Ok, no conflict. */
}
/* Fuse the array base of colocated arrays. */
static int32_t asm_fuseabase(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE &&
!neverfuse(as) && noconflict(as, ref, IR_NEWREF))
return (int32_t)sizeof(GCtab);
return 0;
}
/* Fuse array/hash/upvalue reference into register+offset operand. */
static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow)
{
IRIns *ir = IR(ref);
if (ra_noreg(ir->r)) {
if (ir->o == IR_AREF) {
if (mayfuse(as, ref)) {
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
ofs += 8*IR(ir->op2)->i;
if (checki16(ofs)) {
*ofsp = ofs;
return ra_alloc1(as, refa, allow);
}
}
}
} else if (ir->o == IR_HREFK) {
if (mayfuse(as, ref)) {
int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
if (checki16(ofs)) {
*ofsp = ofs;
return ra_alloc1(as, ir->op1, allow);
}
}
} else if (ir->o == IR_UREFC) {
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv);
int32_t jgl = (intptr_t)J2G(as->J);
if ((uint32_t)(ofs-jgl) < 65536) {
*ofsp = ofs-jgl-32768;
return RID_JGL;
} else {
*ofsp = (int16_t)ofs;
return ra_allock(as, ofs-(int16_t)ofs, allow);
}
}
}
}
*ofsp = 0;
return ra_alloc1(as, ref, allow);
}
/* Fuse XLOAD/XSTORE reference into load/store operand. */
static void asm_fusexref(ASMState *as, MIPSIns mi, Reg rt, IRRef ref,
RegSet allow, int32_t ofs)
{
IRIns *ir = IR(ref);
Reg base;
if (ra_noreg(ir->r) && canfuse(as, ir)) {
if (ir->o == IR_ADD) {
int32_t ofs2;
if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i, checki16(ofs2))) {
ref = ir->op1;
ofs = ofs2;
}
} else if (ir->o == IR_STRREF) {
int32_t ofs2 = 65536;
lua_assert(ofs == 0);
ofs = (int32_t)sizeof(GCstr);
if (irref_isk(ir->op2)) {
ofs2 = ofs + IR(ir->op2)->i;
ref = ir->op1;
} else if (irref_isk(ir->op1)) {
ofs2 = ofs + IR(ir->op1)->i;
ref = ir->op2;
}
if (!checki16(ofs2)) {
/* NYI: Fuse ADD with constant. */
Reg right, left = ra_alloc2(as, ir, allow);
right = (left >> 8); left &= 255;
emit_hsi(as, mi, rt, RID_TMP, ofs);
emit_dst(as, MIPSI_ADDU, RID_TMP, left, right);
return;
}
ofs = ofs2;
}
}
base = ra_alloc1(as, ref, allow);
emit_hsi(as, mi, rt, base, ofs);
}
/* -- Calls --------------------------------------------------------------- */
/* Generate a call to a C function. */
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
{
uint32_t n, nargs = CCI_NARGS(ci);
int32_t ofs = 16;
Reg gpr, fpr = REGARG_FIRSTFPR;
if ((void *)ci->func)
emit_call(as, (void *)ci->func);
for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++)
as->cost[gpr] = REGCOST(~0u, ASMREF_L);
gpr = REGARG_FIRSTGPR;
for (n = 0; n < nargs; n++) { /* Setup args. */
IRRef ref = args[n];
if (ref) {
IRIns *ir = IR(ref);
if (irt_isfp(ir->t) && fpr <= REGARG_LASTFPR &&
!(ci->flags & CCI_VARARG)) {
lua_assert(rset_test(as->freeset, fpr)); /* Already evicted. */
ra_leftov(as, fpr, ref);
fpr += 2;
gpr += irt_isnum(ir->t) ? 2 : 1;
} else {
fpr = REGARG_LASTFPR+1;
if (irt_isnum(ir->t)) gpr = (gpr+1) & ~1;
if (gpr <= REGARG_LASTGPR) {
lua_assert(rset_test(as->freeset, gpr)); /* Already evicted. */
if (irt_isfp(ir->t)) {
RegSet of = as->freeset;
Reg r;
/* Workaround to protect argument GPRs from being used for remat. */
as->freeset &= ~RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1);
r = ra_alloc1(as, ref, RSET_FPR);
as->freeset |= (of & RSET_RANGE(REGARG_FIRSTGPR, REGARG_LASTGPR+1));
if (irt_isnum(ir->t)) {
emit_tg(as, MIPSI_MFC1, gpr+(LJ_BE?0:1), r+1);
emit_tg(as, MIPSI_MFC1, gpr+(LJ_BE?1:0), r);
lua_assert(rset_test(as->freeset, gpr+1)); /* Already evicted. */
gpr += 2;
} else if (irt_isfloat(ir->t)) {
emit_tg(as, MIPSI_MFC1, gpr, r);
gpr++;
}
} else {
ra_leftov(as, gpr, ref);
gpr++;
}
} else {
Reg r = ra_alloc1z(as, ref, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4;
emit_spstore(as, ir, r, ofs);
ofs += irt_isnum(ir->t) ? 8 : 4;
}
}
} else {
fpr = REGARG_LASTFPR+1;
if (gpr <= REGARG_LASTGPR)
gpr++;
else
ofs += 4;
}
checkmclim(as);
}
}
/* Setup result reg/sp for call. Evict scratch regs. */
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
RegSet drop = RSET_SCRATCH;
int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t));
if ((ci->flags & CCI_NOFPRCLOBBER))
drop &= ~RSET_FPR;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
if (hiop && ra_hasreg((ir+1)->r))
rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */
ra_evictset(as, drop); /* Evictions must be performed first. */
if (ra_used(ir)) {
lua_assert(!irt_ispri(ir->t));
if (irt_isfp(ir->t)) {
if ((ci->flags & CCI_CASTU64)) {
int32_t ofs = sps_scale(ir->s);
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
emit_tg(as, MIPSI_MTC1, RID_RETHI, dest+1);
emit_tg(as, MIPSI_MTC1, RID_RETLO, dest);
}
if (ofs) {
emit_tsi(as, MIPSI_SW, RID_RETLO, RID_SP, ofs+(LJ_BE?4:0));
emit_tsi(as, MIPSI_SW, RID_RETHI, RID_SP, ofs+(LJ_BE?0:4));
}
} else {
ra_destreg(as, ir, RID_FPRET);
}
} else if (hiop) {
ra_destpair(as, ir);
} else {
ra_destreg(as, ir, RID_RET);
}
}
}
static void asm_call(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX];
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
asm_collectargs(as, ir, ci, args);
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
static void asm_callx(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX*2];
CCallInfo ci;
IRRef func;
IRIns *irf;
ci.flags = asm_callx_flags(as, ir);
asm_collectargs(as, ir, &ci, args);
asm_setupresult(as, ir, &ci);
func = ir->op2; irf = IR(func);
if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); }
if (irref_isk(func)) { /* Call to constant address. */
ci.func = (ASMFunction)(void *)(irf->i);
} else { /* Need specific register for indirect calls. */
Reg r = ra_alloc1(as, func, RID2RSET(RID_CFUNCADDR));
MCode *p = as->mcp;
if (r == RID_CFUNCADDR)
*--p = MIPSI_NOP;
else
*--p = MIPSI_MOVE | MIPSF_D(RID_CFUNCADDR) | MIPSF_S(r);
*--p = MIPSI_JALR | MIPSF_S(r);
as->mcp = p;
ci.func = (ASMFunction)(void *)0;
}
asm_gencall(as, &ci, args);
}
static void asm_callid(ASMState *as, IRIns *ir, IRCallID id)
{
const CCallInfo *ci = &lj_ir_callinfo[id];
IRRef args[2];
args[0] = ir->op1;
args[1] = ir->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
static void asm_callround(ASMState *as, IRIns *ir, IRCallID id)
{
/* The modified regs must match with the *.dasc implementation. */
RegSet drop = RID2RSET(RID_R1)|RID2RSET(RID_R12)|RID2RSET(RID_FPRET)|
RID2RSET(RID_F2)|RID2RSET(RID_F4)|RID2RSET(REGARG_FIRSTFPR);
if (ra_hasreg(ir->r)) rset_clear(drop, ir->r);
ra_evictset(as, drop);
ra_destreg(as, ir, RID_FPRET);
emit_call(as, (void *)lj_ir_callinfo[id].func);
ra_leftov(as, REGARG_FIRSTFPR, ir->op1);
}
/* -- Returns ------------------------------------------------------------- */
/* Return to lower frame. Guard that it goes to the right spot. */
static void asm_retf(ASMState *as, IRIns *ir)
{
Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
void *pc = ir_kptr(IR(ir->op2));
int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
as->topslot -= (BCReg)delta;
if ((int32_t)as->topslot < 0) as->topslot = 0;
irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */
emit_setgl(as, base, jit_base);
emit_addptr(as, base, -8*delta);
asm_guard(as, MIPSI_BNE, RID_TMP,
ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base)));
emit_tsi(as, MIPSI_LW, RID_TMP, base, -8);
}
/* -- Type conversions ---------------------------------------------------- */
static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
{
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_guard(as, MIPSI_BC1F, 0, 0);
emit_fgh(as, MIPSI_C_EQ_D, 0, tmp, left);
emit_fg(as, MIPSI_CVT_D_W, tmp, tmp);
emit_tg(as, MIPSI_MFC1, dest, tmp);
emit_fg(as, MIPSI_CVT_W_D, tmp, left);
}
static void asm_tobit(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_FPR;
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, allow);
Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left));
Reg tmp = ra_scratch(as, rset_clear(allow, right));
emit_tg(as, MIPSI_MFC1, dest, tmp);
emit_fgh(as, MIPSI_ADD_D, tmp, left, right);
}
static void asm_conv(ASMState *as, IRIns *ir)
{
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
int stfp = (st == IRT_NUM || st == IRT_FLOAT);
IRRef lref = ir->op1;
lua_assert(irt_type(ir->t) != st);
lua_assert(!(irt_isint64(ir->t) ||
(st == IRT_I64 || st == IRT_U64))); /* Handled by SPLIT. */
if (irt_isfp(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
if (stfp) { /* FP to FP conversion. */
emit_fg(as, st == IRT_NUM ? MIPSI_CVT_S_D : MIPSI_CVT_D_S,
dest, ra_alloc1(as, lref, RSET_FPR));
} else if (st == IRT_U32) { /* U32 to FP conversion. */
/* y = (x ^ 0x8000000) + 2147483648.0 */
Reg left = ra_alloc1(as, lref, RSET_GPR);
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, dest));
if (irt_isfloat(ir->t))
emit_fg(as, MIPSI_CVT_S_D, dest, dest);
/* Must perform arithmetic with doubles to keep the precision. */
emit_fgh(as, MIPSI_ADD_D, dest, dest, tmp);
emit_fg(as, MIPSI_CVT_D_W, dest, dest);
emit_lsptr(as, MIPSI_LDC1, (tmp & 31),
(void *)lj_ir_k64_find(as->J, U64x(41e00000,00000000)),
RSET_GPR);
emit_tg(as, MIPSI_MTC1, RID_TMP, dest);
emit_dst(as, MIPSI_XOR, RID_TMP, RID_TMP, left);
emit_ti(as, MIPSI_LUI, RID_TMP, 0x8000);
} else { /* Integer to FP conversion. */
Reg left = ra_alloc1(as, lref, RSET_GPR);
emit_fg(as, irt_isfloat(ir->t) ? MIPSI_CVT_S_W : MIPSI_CVT_D_W,
dest, dest);
emit_tg(as, MIPSI_MTC1, left, dest);
}
} else if (stfp) { /* FP to integer conversion. */
if (irt_isguard(ir->t)) {
/* Checked conversions are only supported from number to int. */
lua_assert(irt_isint(ir->t) && st == IRT_NUM);
asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, lref, RSET_FPR);
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
if (irt_isu32(ir->t)) {
/* y = (int)floor(x - 2147483648.0) ^ 0x80000000 */
emit_dst(as, MIPSI_XOR, dest, dest, RID_TMP);
emit_ti(as, MIPSI_LUI, RID_TMP, 0x8000);
emit_tg(as, MIPSI_MFC1, dest, tmp);
emit_fg(as, st == IRT_FLOAT ? MIPSI_FLOOR_W_S : MIPSI_FLOOR_W_D,
tmp, tmp);
emit_fgh(as, st == IRT_FLOAT ? MIPSI_SUB_S : MIPSI_SUB_D,
tmp, left, tmp);
if (st == IRT_FLOAT)
emit_lsptr(as, MIPSI_LWC1, (tmp & 31),
(void *)lj_ir_k64_find(as->J, U64x(4f000000,4f000000)),
RSET_GPR);
else
emit_lsptr(as, MIPSI_LDC1, (tmp & 31),
(void *)lj_ir_k64_find(as->J, U64x(41e00000,00000000)),
RSET_GPR);
} else {
emit_tg(as, MIPSI_MFC1, dest, tmp);
emit_fg(as, st == IRT_FLOAT ? MIPSI_TRUNC_W_S : MIPSI_TRUNC_W_D,
tmp, left);
}
}
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
if ((ir->op2 & IRCONV_SEXT)) {
if ((as->flags & JIT_F_MIPS32R2)) {
emit_dst(as, st == IRT_I8 ? MIPSI_SEB : MIPSI_SEH, dest, 0, left);
} else {
uint32_t shift = st == IRT_I8 ? 24 : 16;
emit_dta(as, MIPSI_SRA, dest, dest, shift);
emit_dta(as, MIPSI_SLL, dest, left, shift);
}
} else {
emit_tsi(as, MIPSI_ANDI, dest, left,
(int32_t)(st == IRT_U8 ? 0xff : 0xffff));
}
} else { /* 32/64 bit integer conversions. */
/* Only need to handle 32/32 bit no-op (cast) on 32 bit archs. */
ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */
}
}
}
#if LJ_HASFFI
static void asm_conv64(ASMState *as, IRIns *ir)
{
IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
IRCallID id;
const CCallInfo *ci;
IRRef args[2];
args[LJ_BE?0:1] = ir->op1;
args[LJ_BE?1:0] = (ir-1)->op1;
if (st == IRT_NUM || st == IRT_FLOAT) {
id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64);
ir--;
} else {
id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64);
}
ci = &lj_ir_callinfo[id];
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
#endif
static void asm_strto(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num];
IRRef args[2];
RegSet drop = RSET_SCRATCH;
if (ra_hasreg(ir->r)) rset_set(drop, ir->r); /* Spill dest reg (if any). */
ra_evictset(as, drop);
asm_guard(as, MIPSI_BEQ, RID_RET, RID_ZERO); /* Test return status. */
args[0] = ir->op1; /* GCstr *str */
args[1] = ASMREF_TMP1; /* TValue *n */
asm_gencall(as, ci, args);
/* Store the result to the spill slot or temp slots. */
emit_tsi(as, MIPSI_ADDIU, ra_releasetmp(as, ASMREF_TMP1),
RID_SP, sps_scale(ir->s));
}
/* Get pointer to TValue. */
static void asm_tvptr(ASMState *as, Reg dest, IRRef ref)
{
IRIns *ir = IR(ref);
if (irt_isnum(ir->t)) {
if (irref_isk(ref)) /* Use the number constant itself as a TValue. */
ra_allockreg(as, i32ptr(ir_knum(ir)), dest);
else /* Otherwise force a spill and use the spill slot. */
emit_tsi(as, MIPSI_ADDIU, dest, RID_SP, ra_spill(as, ir));
} else {
/* Otherwise use g->tmptv to hold the TValue. */
RegSet allow = rset_exclude(RSET_GPR, dest);
Reg type;
emit_tsi(as, MIPSI_ADDIU, dest, RID_JGL, offsetof(global_State, tmptv)-32768);
if (!irt_ispri(ir->t)) {
Reg src = ra_alloc1(as, ref, allow);
emit_setgl(as, src, tmptv.gcr);
}
type = ra_allock(as, irt_toitype(ir->t), allow);
emit_setgl(as, type, tmptv.it);
}
}
static void asm_tostr(ASMState *as, IRIns *ir)
{
IRRef args[2];
args[0] = ASMREF_L;
as->gcsteps++;
if (irt_isnum(IR(ir->op1)->t) || (ir+1)->o == IR_HIOP) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
args[1] = ASMREF_TMP1; /* const lua_Number * */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1);
} else {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
args[1] = ir->op1; /* int32_t k */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
}
}
/* -- Memory references --------------------------------------------------- */
static void asm_aref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx, base;
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
ofs += 8*IR(ir->op2)->i;
if (checki16(ofs)) {
base = ra_alloc1(as, refa, RSET_GPR);
emit_tsi(as, MIPSI_ADDIU, dest, base, ofs);
return;
}
}
base = ra_alloc1(as, ir->op1, RSET_GPR);
idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base));
emit_dst(as, MIPSI_ADDU, dest, RID_TMP, base);
emit_dta(as, MIPSI_SLL, RID_TMP, idx, 3);
}
/* Inlined hash lookup. Specialized for key type and for const keys.
** The equivalent C code is:
** Node *n = hashkey(t, key);
** do {
** if (lj_obj_equal(&n->key, key)) return &n->val;
** } while ((n = nextnode(n)));
** return niltv(L);
*/
static void asm_href(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_GPR;
int destused = ra_used(ir);
Reg dest = ra_dest(as, ir, allow);
Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
Reg key = RID_NONE, type = RID_NONE, tmpnum = RID_NONE, tmp1 = RID_TMP, tmp2;
IRRef refkey = ir->op2;
IRIns *irkey = IR(refkey);
IRType1 kt = irkey->t;
uint32_t khash;
MCLabel l_end, l_loop, l_next;
rset_clear(allow, tab);
if (irt_isnum(kt)) {
key = ra_alloc1(as, refkey, RSET_FPR);
tmpnum = ra_scratch(as, rset_exclude(RSET_FPR, key));
} else if (!irt_ispri(kt)) {
key = ra_alloc1(as, refkey, allow);
rset_clear(allow, key);
type = ra_allock(as, irt_toitype(irkey->t), allow);
rset_clear(allow, type);
}
tmp2 = ra_scratch(as, allow);
rset_clear(allow, tmp2);
/* Key not found in chain: load niltv. */
l_end = emit_label(as);
if (destused)
emit_loada(as, dest, niltvg(J2G(as->J)));
else
*--as->mcp = MIPSI_NOP;
/* Follow hash chain until the end. */
emit_move(as, dest, tmp1);
l_loop = --as->mcp;
emit_tsi(as, MIPSI_LW, tmp1, dest, (int32_t)offsetof(Node, next));
l_next = emit_label(as);
/* Type and value comparison. */
if (irt_isnum(kt)) {
emit_branch(as, MIPSI_BC1T, 0, 0, l_end);
emit_fgh(as, MIPSI_C_EQ_D, 0, tmpnum, key);
emit_tg(as, MIPSI_MFC1, tmp1, key+1);
emit_branch(as, MIPSI_BEQ, tmp1, RID_ZERO, l_next);
emit_tsi(as, MIPSI_SLTIU, tmp1, tmp1, (int32_t)LJ_TISNUM);
emit_hsi(as, MIPSI_LDC1, tmpnum, dest, (int32_t)offsetof(Node, key.n));
} else {
if (irt_ispri(kt)) {
emit_branch(as, MIPSI_BEQ, tmp1, type, l_end);
} else {
emit_branch(as, MIPSI_BEQ, tmp2, key, l_end);
emit_tsi(as, MIPSI_LW, tmp2, dest, (int32_t)offsetof(Node, key.gcr));
emit_branch(as, MIPSI_BNE, tmp1, type, l_next);
}
}
emit_tsi(as, MIPSI_LW, tmp1, dest, (int32_t)offsetof(Node, key.it));
*l_loop = MIPSI_BNE | MIPSF_S(tmp1) | ((as->mcp-l_loop-1) & 0xffffu);
/* Load main position relative to tab->node into dest. */
khash = irref_isk(refkey) ? ir_khash(irkey) : 1;
if (khash == 0) {
emit_tsi(as, MIPSI_LW, dest, tab, (int32_t)offsetof(GCtab, node));
} else {
Reg tmphash = tmp1;
if (irref_isk(refkey))
tmphash = ra_allock(as, khash, allow);
emit_dst(as, MIPSI_ADDU, dest, dest, tmp1);
lua_assert(sizeof(Node) == 24);
emit_dst(as, MIPSI_SUBU, tmp1, tmp2, tmp1);
emit_dta(as, MIPSI_SLL, tmp1, tmp1, 3);
emit_dta(as, MIPSI_SLL, tmp2, tmp1, 5);
emit_dst(as, MIPSI_AND, tmp1, tmp2, tmphash);
emit_tsi(as, MIPSI_LW, dest, tab, (int32_t)offsetof(GCtab, node));
emit_tsi(as, MIPSI_LW, tmp2, tab, (int32_t)offsetof(GCtab, hmask));
if (irref_isk(refkey)) {
/* Nothing to do. */
} else if (irt_isstr(kt)) {
emit_tsi(as, MIPSI_LW, tmp1, key, (int32_t)offsetof(GCstr, hash));
} else { /* Must match with hash*() in lj_tab.c. */
emit_dst(as, MIPSI_SUBU, tmp1, tmp1, tmp2);
emit_rotr(as, tmp2, tmp2, dest, (-HASH_ROT3)&31);
emit_dst(as, MIPSI_XOR, tmp1, tmp1, tmp2);
emit_rotr(as, tmp1, tmp1, dest, (-HASH_ROT2-HASH_ROT1)&31);
emit_dst(as, MIPSI_SUBU, tmp2, tmp2, dest);
if (irt_isnum(kt)) {
emit_dst(as, MIPSI_XOR, tmp2, tmp2, tmp1);
if ((as->flags & JIT_F_MIPS32R2)) {
emit_dta(as, MIPSI_ROTR, dest, tmp1, (-HASH_ROT1)&31);
} else {
emit_dst(as, MIPSI_OR, dest, dest, tmp1);
emit_dta(as, MIPSI_SLL, tmp1, tmp1, HASH_ROT1);
emit_dta(as, MIPSI_SRL, dest, tmp1, (-HASH_ROT1)&31);
}
emit_dst(as, MIPSI_ADDU, tmp1, tmp1, tmp1);
emit_tg(as, MIPSI_MFC1, tmp2, key);
emit_tg(as, MIPSI_MFC1, tmp1, key+1);
} else {
emit_dst(as, MIPSI_XOR, tmp2, key, tmp1);
emit_rotr(as, dest, tmp1, tmp2, (-HASH_ROT1)&31);
emit_dst(as, MIPSI_ADDU, tmp1, key, ra_allock(as, HASH_BIAS, allow));
}
}
}
}
static void asm_hrefk(ASMState *as, IRIns *ir)
{
IRIns *kslot = IR(ir->op2);
IRIns *irkey = IR(kslot->op1);
int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
int32_t kofs = ofs + (int32_t)offsetof(Node, key);
Reg dest = (ra_used(ir)||ofs > 32736) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
Reg key = RID_NONE, type = RID_TMP, idx = node;
RegSet allow = rset_exclude(RSET_GPR, node);
int32_t lo, hi;
lua_assert(ofs % sizeof(Node) == 0);
if (ofs > 32736) {
idx = dest;
rset_clear(allow, dest);
kofs = (int32_t)offsetof(Node, key);
} else if (ra_hasreg(dest)) {
emit_tsi(as, MIPSI_ADDIU, dest, node, ofs);
}
if (!irt_ispri(irkey->t)) {
key = ra_scratch(as, allow);
rset_clear(allow, key);
}
if (irt_isnum(irkey->t)) {
lo = (int32_t)ir_knum(irkey)->u32.lo;
hi = (int32_t)ir_knum(irkey)->u32.hi;
} else {
lo = irkey->i;
hi = irt_toitype(irkey->t);
if (!ra_hasreg(key))
goto nolo;
}
asm_guard(as, MIPSI_BNE, key, lo ? ra_allock(as, lo, allow) : RID_ZERO);
nolo:
asm_guard(as, MIPSI_BNE, type, hi ? ra_allock(as, hi, allow) : RID_ZERO);
if (ra_hasreg(key)) emit_tsi(as, MIPSI_LW, key, idx, kofs+(LJ_BE?4:0));
emit_tsi(as, MIPSI_LW, type, idx, kofs+(LJ_BE?0:4));
if (ofs > 32736)
emit_tsi(as, MIPSI_ADDU, dest, node, ra_allock(as, ofs, allow));
}
static void asm_newref(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
IRRef args[3];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* GCtab *t */
args[2] = ASMREF_TMP1; /* cTValue *key */
asm_setupresult(as, ir, ci); /* TValue * */
asm_gencall(as, ci, args);
asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2);
}
}
static void asm_uref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
emit_lsptr(as, MIPSI_LW, dest, v, RSET_GPR);
} else {
Reg uv = ra_scratch(as, RSET_GPR);
Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
if (ir->o == IR_UREFC) {
asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO);
emit_tsi(as, MIPSI_ADDIU, dest, uv, (int32_t)offsetof(GCupval, tv));
emit_tsi(as, MIPSI_LBU, RID_TMP, uv, (int32_t)offsetof(GCupval, closed));
} else {
emit_tsi(as, MIPSI_LW, dest, uv, (int32_t)offsetof(GCupval, v));
}
emit_tsi(as, MIPSI_LW, uv, func,
(int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
}
}
static void asm_fref(ASMState *as, IRIns *ir)
{
UNUSED(as); UNUSED(ir);
lua_assert(!ra_used(ir));
}
static void asm_strref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
IRRef ref = ir->op2, refk = ir->op1;
int32_t ofs = (int32_t)sizeof(GCstr);
Reg r;
if (irref_isk(ref)) {
IRRef tmp = refk; refk = ref; ref = tmp;
} else if (!irref_isk(refk)) {
Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR);
IRIns *irr = IR(ir->op2);
if (ra_hasreg(irr->r)) {
ra_noweak(as, irr->r);
right = irr->r;
} else if (mayfuse(as, irr->op2) &&
irr->o == IR_ADD && irref_isk(irr->op2) &&
checki16(ofs + IR(irr->op2)->i)) {
ofs += IR(irr->op2)->i;
right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left));
} else {
right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left));
}
emit_tsi(as, MIPSI_ADDIU, dest, dest, ofs);
emit_dst(as, MIPSI_ADDU, dest, left, right);
return;
}
r = ra_alloc1(as, ref, RSET_GPR);
ofs += IR(refk)->i;
if (checki16(ofs))
emit_tsi(as, MIPSI_ADDIU, dest, r, ofs);
else
emit_dst(as, MIPSI_ADDU, dest, r,
ra_allock(as, ofs, rset_exclude(RSET_GPR, r)));
}
/* -- Loads and stores ---------------------------------------------------- */
static MIPSIns asm_fxloadins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: return MIPSI_LB;
case IRT_U8: return MIPSI_LBU;
case IRT_I16: return MIPSI_LH;
case IRT_U16: return MIPSI_LHU;
case IRT_NUM: return MIPSI_LDC1;
case IRT_FLOAT: return MIPSI_LWC1;
default: return MIPSI_LW;
}
}
static MIPSIns asm_fxstoreins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: case IRT_U8: return MIPSI_SB;
case IRT_I16: case IRT_U16: return MIPSI_SH;
case IRT_NUM: return MIPSI_SDC1;
case IRT_FLOAT: return MIPSI_SWC1;
default: return MIPSI_SW;
}
}
static void asm_fload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx = ra_alloc1(as, ir->op1, RSET_GPR);
MIPSIns mi = asm_fxloadins(ir);
int32_t ofs;
if (ir->op2 == IRFL_TAB_ARRAY) {
ofs = asm_fuseabase(as, ir->op1);
if (ofs) { /* Turn the t->array load into an add for colocated arrays. */
emit_tsi(as, MIPSI_ADDIU, dest, idx, ofs);
return;
}
}
ofs = field_ofs[ir->op2];
lua_assert(!irt_isfp(ir->t));
emit_tsi(as, mi, dest, idx, ofs);
}
static void asm_fstore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1z(as, ir->op2, RSET_GPR);
IRIns *irf = IR(ir->op1);
Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src));
int32_t ofs = field_ofs[irf->op2];
MIPSIns mi = asm_fxstoreins(ir);
lua_assert(!irt_isfp(ir->t));
emit_tsi(as, mi, src, idx, ofs);
}
}
static void asm_xload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED));
asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0);
}
static void asm_xstore(ASMState *as, IRIns *ir, int32_t ofs)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1z(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1,
rset_exclude(RSET_GPR, src), ofs);
}
}
static void asm_ahuvload(ASMState *as, IRIns *ir)
{
IRType1 t = ir->t;
Reg dest = RID_NONE, type = RID_TMP, idx;
RegSet allow = RSET_GPR;
int32_t ofs = 0;
if (ra_used(ir)) {
lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR);
rset_clear(allow, dest);
}
idx = asm_fuseahuref(as, ir->op1, &ofs, allow);
rset_clear(allow, idx);
if (irt_isnum(t)) {
asm_guard(as, MIPSI_BEQ, type, RID_ZERO);
emit_tsi(as, MIPSI_SLTIU, type, type, (int32_t)LJ_TISNUM);
if (ra_hasreg(dest))
emit_hsi(as, MIPSI_LDC1, dest, idx, ofs);
} else {
asm_guard(as, MIPSI_BNE, type, ra_allock(as, irt_toitype(t), allow));
if (ra_hasreg(dest)) emit_tsi(as, MIPSI_LW, dest, idx, ofs+(LJ_BE?4:0));
}
emit_tsi(as, MIPSI_LW, type, idx, ofs+(LJ_BE?0:4));
}
static void asm_ahustore(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_GPR;
Reg idx, src = RID_NONE, type = RID_NONE;
int32_t ofs = 0;
if (ir->r == RID_SINK)
return;
if (irt_isnum(ir->t)) {
src = ra_alloc1(as, ir->op2, RSET_FPR);
} else {
if (!irt_ispri(ir->t)) {
src = ra_alloc1(as, ir->op2, allow);
rset_clear(allow, src);
}
type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow);
rset_clear(allow, type);
}
idx = asm_fuseahuref(as, ir->op1, &ofs, allow);
if (irt_isnum(ir->t)) {
emit_hsi(as, MIPSI_SDC1, src, idx, ofs);
} else {
if (ra_hasreg(src))
emit_tsi(as, MIPSI_SW, src, idx, ofs+(LJ_BE?4:0));
emit_tsi(as, MIPSI_SW, type, idx, ofs+(LJ_BE?0:4));
}
}
static void asm_sload(ASMState *as, IRIns *ir)
{
int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
IRType1 t = ir->t;
Reg dest = RID_NONE, type = RID_NONE, base;
RegSet allow = RSET_GPR;
lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
lua_assert(!irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
dest = ra_scratch(as, RSET_FPR);
asm_tointg(as, ir, dest);
t.irt = IRT_NUM; /* Continue with a regular number type check. */
} else if (ra_used(ir)) {
lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR);
rset_clear(allow, dest);
base = ra_alloc1(as, REF_BASE, allow);
rset_clear(allow, base);
if ((ir->op2 & IRSLOAD_CONVERT)) {
if (irt_isint(t)) {
Reg tmp = ra_scratch(as, RSET_FPR);
emit_tg(as, MIPSI_MFC1, dest, tmp);
emit_fg(as, MIPSI_CVT_W_D, tmp, tmp);
dest = tmp;
t.irt = IRT_NUM; /* Check for original type. */
} else {
Reg tmp = ra_scratch(as, RSET_GPR);
emit_fg(as, MIPSI_CVT_D_W, dest, dest);
emit_tg(as, MIPSI_MTC1, tmp, dest);
dest = tmp;
t.irt = IRT_INT; /* Check for original type. */
}
}
goto dotypecheck;
}
base = ra_alloc1(as, REF_BASE, allow);
rset_clear(allow, base);
dotypecheck:
if (irt_isnum(t)) {
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
asm_guard(as, MIPSI_BEQ, RID_TMP, RID_ZERO);
emit_tsi(as, MIPSI_SLTIU, RID_TMP, RID_TMP, (int32_t)LJ_TISNUM);
type = RID_TMP;
}
if (ra_hasreg(dest)) emit_hsi(as, MIPSI_LDC1, dest, base, ofs);
} else {
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
Reg ktype = ra_allock(as, irt_toitype(t), allow);
asm_guard(as, MIPSI_BNE, RID_TMP, ktype);
type = RID_TMP;
}
if (ra_hasreg(dest)) emit_tsi(as, MIPSI_LW, dest, base, ofs ^ (LJ_BE?4:0));
}
if (ra_hasreg(type)) emit_tsi(as, MIPSI_LW, type, base, ofs ^ (LJ_BE?0:4));
}
/* -- Allocations --------------------------------------------------------- */
#if LJ_HASFFI
static void asm_cnew(ASMState *as, IRIns *ir)
{
CTState *cts = ctype_ctsG(J2G(as->J));
CTypeID ctypeid = (CTypeID)IR(ir->op1)->i;
CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i;
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
IRRef args[2];
RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
RegSet drop = RSET_SCRATCH;
lua_assert(sz != CTSIZE_INVALID);
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* MSize size */
as->gcsteps++;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop);
if (ra_used(ir))
ra_destreg(as, ir, RID_RET); /* GCcdata * */
/* Initialize immutable cdata object. */
if (ir->o == IR_CNEWI) {
int32_t ofs = sizeof(GCcdata);
lua_assert(sz == 4 || sz == 8);
if (sz == 8) {
ofs += 4;
lua_assert((ir+1)->o == IR_HIOP);
if (LJ_LE) ir++;
}
for (;;) {
Reg r = ra_alloc1z(as, ir->op2, allow);
emit_tsi(as, MIPSI_SW, r, RID_RET, ofs);
rset_clear(allow, r);
if (ofs == sizeof(GCcdata)) break;
ofs -= 4; if (LJ_BE) ir++; else ir--;
}
}
/* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */
emit_tsi(as, MIPSI_SB, RID_RET+1, RID_RET, offsetof(GCcdata, gct));
emit_tsi(as, MIPSI_SH, RID_TMP, RID_RET, offsetof(GCcdata, ctypeid));
emit_ti(as, MIPSI_LI, RID_RET+1, ~LJ_TCDATA);
emit_ti(as, MIPSI_LI, RID_TMP, ctypeid); /* Lower 16 bit used. Sign-ext ok. */
asm_gencall(as, ci, args);
ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)),
ra_releasetmp(as, ASMREF_TMP1));
}
#else
#define asm_cnew(as, ir) ((void)0)
#endif
/* -- Write barriers ------------------------------------------------------ */
static void asm_tbar(ASMState *as, IRIns *ir)
{
Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
Reg mark = ra_scratch(as, rset_exclude(RSET_GPR, tab));
Reg link = RID_TMP;
MCLabel l_end = emit_label(as);
emit_tsi(as, MIPSI_SW, link, tab, (int32_t)offsetof(GCtab, gclist));
emit_tsi(as, MIPSI_SB, mark, tab, (int32_t)offsetof(GCtab, marked));
emit_setgl(as, tab, gc.grayagain);
emit_getgl(as, link, gc.grayagain);
emit_dst(as, MIPSI_XOR, mark, mark, RID_TMP); /* Clear black bit. */
emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end);
emit_tsi(as, MIPSI_ANDI, RID_TMP, mark, LJ_GC_BLACK);
emit_tsi(as, MIPSI_LBU, mark, tab, (int32_t)offsetof(GCtab, marked));
}
static void asm_obar(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
IRRef args[2];
MCLabel l_end;
Reg obj, val, tmp;
/* No need for other object barriers (yet). */
lua_assert(IR(ir->op1)->o == IR_UREFC);
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ir->op1; /* TValue *tv */
asm_gencall(as, ci, args);
emit_tsi(as, MIPSI_ADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768);
obj = IR(ir->op1)->r;
tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj));
emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end);
emit_tsi(as, MIPSI_ANDI, tmp, tmp, LJ_GC_BLACK);
emit_branch(as, MIPSI_BEQ, RID_TMP, RID_ZERO, l_end);
emit_tsi(as, MIPSI_ANDI, RID_TMP, RID_TMP, LJ_GC_WHITES);
val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj));
emit_tsi(as, MIPSI_LBU, tmp, obj,
(int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
emit_tsi(as, MIPSI_LBU, RID_TMP, val, (int32_t)offsetof(GChead, marked));
}
/* -- Arithmetic and logic operations ------------------------------------- */
static void asm_fparith(ASMState *as, IRIns *ir, MIPSIns mi)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
emit_fgh(as, mi, dest, left, right);
}
static void asm_fpunary(ASMState *as, IRIns *ir, MIPSIns mi)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR);
emit_fg(as, mi, dest, left);
}
static int asm_fpjoin_pow(ASMState *as, IRIns *ir)
{
IRIns *irp = IR(ir->op1);
if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
IRIns *irpp = IR(irp->op1);
if (irpp == ir-2 && irpp->o == IR_FPMATH &&
irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow];
IRRef args[2];
args[0] = irpp->op1;
args[1] = irp->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
return 1;
}
}
return 0;
}
static void asm_add(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fparith(as, ir, MIPSI_ADD_D);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (checki16(k)) {
emit_tsi(as, MIPSI_ADDIU, dest, left, k);
return;
}
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_dst(as, MIPSI_ADDU, dest, left, right);
}
}
static void asm_sub(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fparith(as, ir, MIPSI_SUB_D);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
emit_dst(as, MIPSI_SUBU, dest, left, right);
}
}
static void asm_mul(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fparith(as, ir, MIPSI_MUL_D);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
emit_dst(as, MIPSI_MUL, dest, left, right);
}
}
static void asm_neg(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fpunary(as, ir, MIPSI_NEG_D);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left);
}
}
static void asm_arithov(ASMState *as, IRIns *ir)
{
Reg right, left, tmp, dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op2)) {
int k = IR(ir->op2)->i;
if (ir->o == IR_SUBOV) k = -k;
if (checki16(k)) { /* (dest < left) == (k >= 0 ? 1 : 0) */
left = ra_alloc1(as, ir->op1, RSET_GPR);
asm_guard(as, k >= 0 ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO);
emit_dst(as, MIPSI_SLT, RID_TMP, dest, dest == left ? RID_TMP : left);
emit_tsi(as, MIPSI_ADDIU, dest, left, k);
if (dest == left) emit_move(as, RID_TMP, left);
return;
}
}
left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR, left),
right), dest));
asm_guard(as, MIPSI_BLTZ, RID_TMP, 0);
emit_dst(as, MIPSI_AND, RID_TMP, RID_TMP, tmp);
if (ir->o == IR_ADDOV) { /* ((dest^left) & (dest^right)) < 0 */
emit_dst(as, MIPSI_XOR, RID_TMP, dest, dest == right ? RID_TMP : right);
} else { /* ((dest^left) & (dest^~right)) < 0 */
emit_dst(as, MIPSI_XOR, RID_TMP, RID_TMP, dest);
emit_dst(as, MIPSI_NOR, RID_TMP, dest == right ? RID_TMP : right, RID_ZERO);
}
emit_dst(as, MIPSI_XOR, tmp, dest, dest == left ? RID_TMP : left);
emit_dst(as, ir->o == IR_ADDOV ? MIPSI_ADDU : MIPSI_SUBU, dest, left, right);
if (dest == left || dest == right)
emit_move(as, RID_TMP, dest == left ? left : right);
}
static void asm_mulov(ASMState *as, IRIns *ir)
{
#if LJ_DUALNUM
#error "NYI: MULOV"
#else
UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused in single-number mode. */
#endif
}
#if LJ_HASFFI
static void asm_add64(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (k == 0) {
emit_dst(as, MIPSI_ADDU, dest, left, RID_TMP);
goto loarith;
} else if (checki16(k)) {
emit_dst(as, MIPSI_ADDU, dest, dest, RID_TMP);
emit_tsi(as, MIPSI_ADDIU, dest, left, k);
goto loarith;
}
}
emit_dst(as, MIPSI_ADDU, dest, dest, RID_TMP);
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_dst(as, MIPSI_ADDU, dest, left, right);
loarith:
ir--;
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc1(as, ir->op1, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (k == 0) {
if (dest != left)
emit_move(as, dest, left);
return;
} else if (checki16(k)) {
if (dest == left) {
Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, left));
emit_move(as, dest, tmp);
dest = tmp;
}
emit_dst(as, MIPSI_SLTU, RID_TMP, dest, left);
emit_tsi(as, MIPSI_ADDIU, dest, left, k);
return;
}
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
if (dest == left && dest == right) {
Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right));
emit_move(as, dest, tmp);
dest = tmp;
}
emit_dst(as, MIPSI_SLTU, RID_TMP, dest, dest == left ? right : left);
emit_dst(as, MIPSI_ADDU, dest, left, right);
}
static void asm_sub64(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
emit_dst(as, MIPSI_SUBU, dest, dest, RID_TMP);
emit_dst(as, MIPSI_SUBU, dest, left, right);
ir--;
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
if (dest == left) {
Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right));
emit_move(as, dest, tmp);
dest = tmp;
}
emit_dst(as, MIPSI_SLTU, RID_TMP, left, dest);
emit_dst(as, MIPSI_SUBU, dest, left, right);
}
static void asm_neg64(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
emit_dst(as, MIPSI_SUBU, dest, dest, RID_TMP);
emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left);
ir--;
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc1(as, ir->op1, RSET_GPR);
emit_dst(as, MIPSI_SLTU, RID_TMP, RID_ZERO, dest);
emit_dst(as, MIPSI_SUBU, dest, RID_ZERO, left);
}
#endif
static void asm_bitnot(ASMState *as, IRIns *ir)
{
Reg left, right, dest = ra_dest(as, ir, RSET_GPR);
IRIns *irl = IR(ir->op1);
if (mayfuse(as, ir->op1) && irl->o == IR_BOR) {
left = ra_alloc2(as, irl, RSET_GPR);
right = (left >> 8); left &= 255;
} else {
left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
right = RID_ZERO;
}
emit_dst(as, MIPSI_NOR, dest, left, right);
}
static void asm_bitswap(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
if ((as->flags & JIT_F_MIPS32R2)) {
emit_dta(as, MIPSI_ROTR, dest, RID_TMP, 16);
emit_dst(as, MIPSI_WSBH, RID_TMP, 0, left);
} else {
Reg tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), dest));
emit_dst(as, MIPSI_OR, dest, dest, tmp);
emit_dst(as, MIPSI_OR, dest, dest, RID_TMP);
emit_tsi(as, MIPSI_ANDI, dest, dest, 0xff00);
emit_dta(as, MIPSI_SLL, RID_TMP, RID_TMP, 8);
emit_dta(as, MIPSI_SRL, dest, left, 8);
emit_tsi(as, MIPSI_ANDI, RID_TMP, left, 0xff00);
emit_dst(as, MIPSI_OR, tmp, tmp, RID_TMP);
emit_dta(as, MIPSI_SRL, tmp, left, 24);
emit_dta(as, MIPSI_SLL, RID_TMP, left, 24);
}
}
static void asm_bitop(ASMState *as, IRIns *ir, MIPSIns mi, MIPSIns mik)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (checku16(k)) {
emit_tsi(as, mik, dest, left, k);
return;
}
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_dst(as, mi, dest, left, right);
}
static void asm_bitshift(ASMState *as, IRIns *ir, MIPSIns mi, MIPSIns mik)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op2)) { /* Constant shifts. */
uint32_t shift = (uint32_t)(IR(ir->op2)->i & 31);
emit_dta(as, mik, dest, ra_hintalloc(as, ir->op1, dest, RSET_GPR), shift);
} else {
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
emit_dst(as, mi, dest, right, left); /* Shift amount is in rs. */
}
}
static void asm_bitror(ASMState *as, IRIns *ir)
{
if ((as->flags & JIT_F_MIPS32R2)) {
asm_bitshift(as, ir, MIPSI_ROTRV, MIPSI_ROTR);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op2)) { /* Constant shifts. */
uint32_t shift = (uint32_t)(IR(ir->op2)->i & 31);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
emit_rotr(as, dest, left, RID_TMP, shift);
} else {
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
emit_dst(as, MIPSI_OR, dest, dest, RID_TMP);
emit_dst(as, MIPSI_SRLV, dest, right, left);
emit_dst(as, MIPSI_SLLV, RID_TMP, RID_TMP, left);
emit_dst(as, MIPSI_SUBU, RID_TMP, ra_allock(as, 32, RSET_GPR), right);
}
}
}
static void asm_min_max(ASMState *as, IRIns *ir, int ismax)
{
if (irt_isnum(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
if (dest == left) {
emit_fg(as, MIPSI_MOVT_D, dest, right);
} else {
emit_fg(as, MIPSI_MOVF_D, dest, left);
if (dest != right) emit_fg(as, MIPSI_MOV_D, dest, right);
}
emit_fgh(as, MIPSI_C_OLT_D, 0, ismax ? left : right, ismax ? right : left);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
if (dest == left) {
emit_dst(as, MIPSI_MOVN, dest, right, RID_TMP);
} else {
emit_dst(as, MIPSI_MOVZ, dest, left, RID_TMP);
if (dest != right) emit_move(as, dest, right);
}
emit_dst(as, MIPSI_SLT, RID_TMP,
ismax ? left : right, ismax ? right : left);
}
}
/* -- Comparisons --------------------------------------------------------- */
static void asm_comp(ASMState *as, IRIns *ir)
{
/* ORDER IR: LT GE LE GT ULT UGE ULE UGT. */
IROp op = ir->o;
if (irt_isnum(ir->t)) {
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
asm_guard(as, (op&1) ? MIPSI_BC1T : MIPSI_BC1F, 0, 0);
emit_fgh(as, MIPSI_C_OLT_D + ((op&3) ^ ((op>>2)&1)), 0, left, right);
} else {
Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR);
if (op == IR_ABC) op = IR_UGT;
if ((op&4) == 0 && irref_isk(ir->op2) && IR(ir->op2)->i == 0) {
MIPSIns mi = (op&2) ? ((op&1) ? MIPSI_BLEZ : MIPSI_BGTZ) :
((op&1) ? MIPSI_BLTZ : MIPSI_BGEZ);
asm_guard(as, mi, left, 0);
} else {
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if ((op&2)) k++;
if (checki16(k)) {
asm_guard(as, (op&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO);
emit_tsi(as, (op&4) ? MIPSI_SLTIU : MIPSI_SLTI,
RID_TMP, left, k);
return;
}
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
asm_guard(as, ((op^(op>>1))&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO);
emit_dst(as, (op&4) ? MIPSI_SLTU : MIPSI_SLT,
RID_TMP, (op&2) ? right : left, (op&2) ? left : right);
}
}
}
static void asm_compeq(ASMState *as, IRIns *ir)
{
Reg right, left = ra_alloc2(as, ir, irt_isnum(ir->t) ? RSET_FPR : RSET_GPR);
right = (left >> 8); left &= 255;
if (irt_isnum(ir->t)) {
asm_guard(as, (ir->o & 1) ? MIPSI_BC1T : MIPSI_BC1F, 0, 0);
emit_fgh(as, MIPSI_C_EQ_D, 0, left, right);
} else {
asm_guard(as, (ir->o & 1) ? MIPSI_BEQ : MIPSI_BNE, left, right);
}
}
#if LJ_HASFFI
/* 64 bit integer comparisons. */
static void asm_comp64(ASMState *as, IRIns *ir)
{
/* ORDER IR: LT GE LE GT ULT UGE ULE UGT. */
IROp op = (ir-1)->o;
MCLabel l_end;
Reg rightlo, leftlo, righthi, lefthi = ra_alloc2(as, ir, RSET_GPR);
righthi = (lefthi >> 8); lefthi &= 255;
leftlo = ra_alloc2(as, ir-1,
rset_exclude(rset_exclude(RSET_GPR, lefthi), righthi));
rightlo = (leftlo >> 8); leftlo &= 255;
asm_guard(as, ((op^(op>>1))&1) ? MIPSI_BNE : MIPSI_BEQ, RID_TMP, RID_ZERO);
l_end = emit_label(as);
if (lefthi != righthi)
emit_dst(as, (op&4) ? MIPSI_SLTU : MIPSI_SLT, RID_TMP,
(op&2) ? righthi : lefthi, (op&2) ? lefthi : righthi);
emit_dst(as, MIPSI_SLTU, RID_TMP,
(op&2) ? rightlo : leftlo, (op&2) ? leftlo : rightlo);
if (lefthi != righthi)
emit_branch(as, MIPSI_BEQ, lefthi, righthi, l_end);
}
static void asm_comp64eq(ASMState *as, IRIns *ir)
{
Reg tmp, right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
asm_guard(as, ((ir-1)->o & 1) ? MIPSI_BEQ : MIPSI_BNE, RID_TMP, RID_ZERO);
tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR, left), right));
emit_dst(as, MIPSI_OR, RID_TMP, RID_TMP, tmp);
emit_dst(as, MIPSI_XOR, tmp, left, right);
left = ra_alloc2(as, ir-1, RSET_GPR);
right = (left >> 8); left &= 255;
emit_dst(as, MIPSI_XOR, RID_TMP, left, right);
}
#endif
/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
static void asm_hiop(ASMState *as, IRIns *ir)
{
#if LJ_HASFFI
/* HIOP is marked as a store because it needs its own DCE logic. */
int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
as->curins--; /* Always skip the CONV. */
if (usehi || uselo)
asm_conv64(as, ir);
return;
} else if ((ir-1)->o < IR_EQ) { /* 64 bit integer comparisons. ORDER IR. */
as->curins--; /* Always skip the loword comparison. */
asm_comp64(as, ir);
return;
} else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
as->curins--; /* Always skip the loword comparison. */
asm_comp64eq(as, ir);
return;
} else if ((ir-1)->o == IR_XSTORE) {
as->curins--; /* Handle both stores here. */
if ((ir-1)->r != RID_SINK) {
asm_xstore(as, ir, LJ_LE ? 4 : 0);
asm_xstore(as, ir-1, LJ_LE ? 0 : 4);
}
return;
}
if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
switch ((ir-1)->o) {
case IR_ADD: as->curins--; asm_add64(as, ir); break;
case IR_SUB: as->curins--; asm_sub64(as, ir); break;
case IR_NEG: as->curins--; asm_neg64(as, ir); break;
case IR_CALLN:
case IR_CALLXS:
if (!uselo)
ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */
break;
case IR_CNEWI:
/* Nothing to do here. Handled by lo op itself. */
break;
default: lua_assert(0); break;
}
#else
UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused without FFI. */
#endif
}
/* -- Stack handling ------------------------------------------------------ */
/* Check Lua stack size for overflow. Use exit handler as fallback. */
static void asm_stack_check(ASMState *as, BCReg topslot,
IRIns *irp, RegSet allow, ExitNo exitno)
{
/* Try to get an unused temp. register, otherwise spill/restore RID_RET*. */
Reg tmp, pbase = irp ? (ra_hasreg(irp->r) ? irp->r : RID_TMP) : RID_BASE;
ExitNo oldsnap = as->snapno;
rset_clear(allow, pbase);
tmp = allow ? rset_pickbot(allow) :
(pbase == RID_RETHI ? RID_RETLO : RID_RETHI);
as->snapno = exitno;
asm_guard(as, MIPSI_BNE, RID_TMP, RID_ZERO);
as->snapno = oldsnap;
if (allow == RSET_EMPTY) /* Restore temp. register. */
emit_tsi(as, MIPSI_LW, tmp, RID_SP, 0);
else
ra_modified(as, tmp);
emit_tsi(as, MIPSI_SLTIU, RID_TMP, RID_TMP, (int32_t)(8*topslot));
emit_dst(as, MIPSI_SUBU, RID_TMP, tmp, pbase);
emit_tsi(as, MIPSI_LW, tmp, tmp, offsetof(lua_State, maxstack));
if (pbase == RID_TMP)
emit_getgl(as, RID_TMP, jit_base);
emit_getgl(as, tmp, jit_L);
if (allow == RSET_EMPTY) /* Spill temp. register. */
emit_tsi(as, MIPSI_SW, tmp, RID_SP, 0);
}
/* Restore Lua stack from on-trace state. */
static void asm_stack_restore(ASMState *as, SnapShot *snap)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1];
MSize n, nent = snap->nent;
/* Store the value of all modified slots to the Lua stack. */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
BCReg s = snap_slot(sn);
int32_t ofs = 8*((int32_t)s-1);
IRRef ref = snap_ref(sn);
IRIns *ir = IR(ref);
if ((sn & SNAP_NORESTORE))
continue;
if (irt_isnum(ir->t)) {
Reg src = ra_alloc1(as, ref, RSET_FPR);
emit_hsi(as, MIPSI_SDC1, src, RID_BASE, ofs);
} else {
Reg type;
RegSet allow = rset_exclude(RSET_GPR, RID_BASE);
lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t));
if (!irt_ispri(ir->t)) {
Reg src = ra_alloc1(as, ref, allow);
rset_clear(allow, src);
emit_tsi(as, MIPSI_SW, src, RID_BASE, ofs+(LJ_BE?4:0));
}
if ((sn & (SNAP_CONT|SNAP_FRAME))) {
if (s == 0) continue; /* Do not overwrite link to previous frame. */
type = ra_allock(as, (int32_t)(*flinks--), allow);
} else {
type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow);
}
emit_tsi(as, MIPSI_SW, type, RID_BASE, ofs+(LJ_BE?0:4));
}
checkmclim(as);
}
lua_assert(map + nent == flinks);
}
/* -- GC handling --------------------------------------------------------- */
/* Check GC threshold and do one or more GC steps. */
static void asm_gc_check(ASMState *as)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
IRRef args[2];
MCLabel l_end;
Reg tmp;
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
/* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
/* Assumes asm_snap_prep() already done. */
asm_guard(as, MIPSI_BNE, RID_RET, RID_ZERO);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ASMREF_TMP2; /* MSize steps */
asm_gencall(as, ci, args);
emit_tsi(as, MIPSI_ADDIU, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768);
tmp = ra_releasetmp(as, ASMREF_TMP2);
emit_loadi(as, tmp, as->gcsteps);
/* Jump around GC step if GC total < GC threshold. */
emit_branch(as, MIPSI_BNE, RID_TMP, RID_ZERO, l_end);
emit_dst(as, MIPSI_SLTU, RID_TMP, RID_TMP, tmp);
emit_getgl(as, tmp, gc.threshold);
emit_getgl(as, RID_TMP, gc.total);
as->gcsteps = 0;
checkmclim(as);
}
/* -- Loop handling ------------------------------------------------------- */
/* Fixup the loop branch. */
static void asm_loop_fixup(ASMState *as)
{
MCode *p = as->mctop;
MCode *target = as->mcp;
p[-1] = MIPSI_NOP;
if (as->loopinv) { /* Inverted loop branch? */
/* asm_guard already inverted the cond branch. Only patch the target. */
p[-3] |= ((target-p+2) & 0x0000ffffu);
} else {
p[-2] = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu);
}
}
/* -- Head of trace ------------------------------------------------------- */
/* Coalesce BASE register for a root trace. */
static void asm_head_root_base(ASMState *as)
{
IRIns *ir = IR(REF_BASE);
Reg r = ir->r;
if (as->loopinv) as->mctop--;
if (ra_hasreg(r)) {
ra_free(as, r);
if (rset_test(as->modset, r) || irt_ismarked(ir->t))
ir->r = RID_INIT; /* No inheritance for modified BASE register. */
if (r != RID_BASE)
emit_move(as, r, RID_BASE);
}
}
/* Coalesce BASE register for a side trace. */
static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
{
IRIns *ir = IR(REF_BASE);
Reg r = ir->r;
if (as->loopinv) as->mctop--;
if (ra_hasreg(r)) {
ra_free(as, r);
if (rset_test(as->modset, r) || irt_ismarked(ir->t))
ir->r = RID_INIT; /* No inheritance for modified BASE register. */
if (irp->r == r) {
rset_clear(allow, r); /* Mark same BASE register as coalesced. */
} else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) {
rset_clear(allow, irp->r);
emit_move(as, r, irp->r); /* Move from coalesced parent reg. */
} else {
emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
}
}
return allow;
}
/* -- Tail of trace ------------------------------------------------------- */
/* Fixup the tail code. */
static void asm_tail_fixup(ASMState *as, TraceNo lnk)
{
MCode *target = lnk ? traceref(as->J,lnk)->mcode : (MCode *)lj_vm_exit_interp;
int32_t spadj = as->T->spadjust;
MCode *p = as->mctop-1;
*p = spadj ? (MIPSI_ADDIU|MIPSF_T(RID_SP)|MIPSF_S(RID_SP)|spadj) : MIPSI_NOP;
p[-1] = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu);
}
/* Prepare tail of code. */
static void asm_tail_prep(ASMState *as)
{
as->mcp = as->mctop-2; /* Leave room for branch plus nop or stack adj. */
as->invmcp = as->loopref ? as->mcp : NULL;
}
/* -- Instruction dispatch ------------------------------------------------ */
/* Assemble a single instruction. */
static void asm_ir(ASMState *as, IRIns *ir)
{
switch ((IROp)ir->o) {
/* Miscellaneous ops. */
case IR_LOOP: asm_loop(as); break;
case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
case IR_USE:
ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
case IR_PHI: asm_phi(as, ir); break;
case IR_HIOP: asm_hiop(as, ir); break;
case IR_GCSTEP: asm_gcstep(as, ir); break;
/* Guarded assertions. */
case IR_EQ: case IR_NE: asm_compeq(as, ir); break;
case IR_LT: case IR_GE: case IR_LE: case IR_GT:
case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
case IR_ABC:
asm_comp(as, ir);
break;
case IR_RETF: asm_retf(as, ir); break;
/* Bit ops. */
case IR_BNOT: asm_bitnot(as, ir); break;
case IR_BSWAP: asm_bitswap(as, ir); break;
case IR_BAND: asm_bitop(as, ir, MIPSI_AND, MIPSI_ANDI); break;
case IR_BOR: asm_bitop(as, ir, MIPSI_OR, MIPSI_ORI); break;
case IR_BXOR: asm_bitop(as, ir, MIPSI_XOR, MIPSI_XORI); break;
case IR_BSHL: asm_bitshift(as, ir, MIPSI_SLLV, MIPSI_SLL); break;
case IR_BSHR: asm_bitshift(as, ir, MIPSI_SRLV, MIPSI_SRL); break;
case IR_BSAR: asm_bitshift(as, ir, MIPSI_SRAV, MIPSI_SRA); break;
case IR_BROL: lua_assert(0); break;
case IR_BROR: asm_bitror(as, ir); break;
/* Arithmetic ops. */
case IR_ADD: asm_add(as, ir); break;
case IR_SUB: asm_sub(as, ir); break;
case IR_MUL: asm_mul(as, ir); break;
case IR_DIV: asm_fparith(as, ir, MIPSI_DIV_D); break;
case IR_MOD: asm_callid(as, ir, IRCALL_lj_vm_modi); break;
case IR_POW: asm_callid(as, ir, IRCALL_lj_vm_powi); break;
case IR_NEG: asm_neg(as, ir); break;
case IR_ABS: asm_fpunary(as, ir, MIPSI_ABS_D); break;
case IR_ATAN2: asm_callid(as, ir, IRCALL_atan2); break;
case IR_LDEXP: asm_callid(as, ir, IRCALL_ldexp); break;
case IR_MIN: asm_min_max(as, ir, 0); break;
case IR_MAX: asm_min_max(as, ir, 1); break;
case IR_FPMATH:
if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir))
break;
if (ir->op2 <= IRFPM_TRUNC)
asm_callround(as, ir, IRCALL_lj_vm_floor + ir->op2);
else if (ir->op2 == IRFPM_SQRT)
asm_fpunary(as, ir, MIPSI_SQRT_D);
else
asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2);
break;
/* Overflow-checking arithmetic ops. */
case IR_ADDOV: asm_arithov(as, ir); break;
case IR_SUBOV: asm_arithov(as, ir); break;
case IR_MULOV: asm_mulov(as, ir); break;
/* Memory references. */
case IR_AREF: asm_aref(as, ir); break;
case IR_HREF: asm_href(as, ir); break;
case IR_HREFK: asm_hrefk(as, ir); break;
case IR_NEWREF: asm_newref(as, ir); break;
case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
case IR_FREF: asm_fref(as, ir); break;
case IR_STRREF: asm_strref(as, ir); break;
/* Loads and stores. */
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
asm_ahuvload(as, ir);
break;
case IR_FLOAD: asm_fload(as, ir); break;
case IR_XLOAD: asm_xload(as, ir); break;
case IR_SLOAD: asm_sload(as, ir); break;
case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
case IR_FSTORE: asm_fstore(as, ir); break;
case IR_XSTORE: asm_xstore(as, ir, 0); break;
/* Allocations. */
case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
case IR_TNEW: asm_tnew(as, ir); break;
case IR_TDUP: asm_tdup(as, ir); break;
case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
/* Write barriers. */
case IR_TBAR: asm_tbar(as, ir); break;
case IR_OBAR: asm_obar(as, ir); break;
/* Type conversions. */
case IR_CONV: asm_conv(as, ir); break;
case IR_TOBIT: asm_tobit(as, ir); break;
case IR_TOSTR: asm_tostr(as, ir); break;
case IR_STRTO: asm_strto(as, ir); break;
/* Calls. */
case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
case IR_CALLXS: asm_callx(as, ir); break;
case IR_CARG: break;
default:
setintV(&as->J->errinfo, ir->o);
lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
break;
}
}
/* -- Trace setup --------------------------------------------------------- */
/* Ensure there are enough stack slots for call arguments. */
static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
IRRef args[CCI_NARGS_MAX*2];
uint32_t i, nargs = (int)CCI_NARGS(ci);
int nslots = 4, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR;
asm_collectargs(as, ir, ci, args);
for (i = 0; i < nargs; i++) {
if (args[i] && irt_isfp(IR(args[i])->t) &&
nfpr > 0 && !(ci->flags & CCI_VARARG)) {
nfpr--;
ngpr -= irt_isnum(IR(args[i])->t) ? 2 : 1;
} else if (args[i] && irt_isnum(IR(args[i])->t)) {
nfpr = 0;
ngpr = ngpr & ~1;
if (ngpr > 0) ngpr -= 2; else nslots = (nslots+3) & ~1;
} else {
nfpr = 0;
if (ngpr > 0) ngpr--; else nslots++;
}
}
if (nslots > as->evenspill) /* Leave room for args in stack slots. */
as->evenspill = nslots;
return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
}
static void asm_setup_target(ASMState *as)
{
asm_sparejump_setup(as);
asm_exitstub_setup(as);
}
/* -- Trace patching ------------------------------------------------------ */
/* Patch exit jumps of existing machine code to a new target. */
void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
{
MCode *p = T->mcode;
MCode *pe = (MCode *)((char *)p + T->szmcode);
MCode *px = exitstub_trace_addr(T, exitno);
MCode *cstart = NULL, *cstop = NULL;
MCode *mcarea = lj_mcode_patch(J, p, 0);
MCode exitload = MIPSI_LI | MIPSF_T(RID_TMP) | exitno;
MCode tjump = MIPSI_J|(((uintptr_t)target>>2)&0x03ffffffu);
for (p++; p < pe; p++) {
if (*p == exitload) { /* Look for load of exit number. */
if (((p[-1] ^ (px-p)) & 0xffffu) == 0) { /* Look for exitstub branch. */
ptrdiff_t delta = target - p;
if (((delta + 0x8000) >> 16) == 0) { /* Patch in-range branch. */
patchbranch:
p[-1] = (p[-1] & 0xffff0000u) | (delta & 0xffffu);
*p = MIPSI_NOP; /* Replace the load of the exit number. */
cstop = p;
if (!cstart) cstart = p-1;
} else { /* Branch out of range. Use spare jump slot in mcarea. */
int i;
for (i = 2; i < 2+MIPS_SPAREJUMP*2; i += 2) {
if (mcarea[i] == tjump) {
delta = mcarea+i - p;
goto patchbranch;
} else if (mcarea[i] == MIPSI_NOP) {
mcarea[i] = tjump;
cstart = mcarea+i;
delta = mcarea+i - p;
goto patchbranch;
}
}
/* Ignore jump slot overflow. Child trace is simply not attached. */
}
} else if (p+1 == pe) {
/* Patch NOP after code for inverted loop branch. Use of J is ok. */
lua_assert(p[1] == MIPSI_NOP);
p[1] = tjump;
*p = MIPSI_NOP; /* Replace the load of the exit number. */
cstop = p+2;
if (!cstart) cstart = p+1;
}
}
}
if (cstart) lj_mcode_sync(cstart, cstop);
lj_mcode_patch(J, mcarea, 1);
}