1
0
Fork 0
Aegisub/subprojects/luajit/src/lj_asm_ppc.h

2169 lines
69 KiB
C

/*
** PPC IR assembler (SSA IR -> machine code).
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
*/
/* -- Register allocator extensions --------------------------------------- */
/* Allocate a register with a hint. */
static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow)
{
Reg r = IR(ref)->r;
if (ra_noreg(r)) {
if (!ra_hashint(r) && !iscrossref(as, ref))
ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */
r = ra_allocref(as, ref, allow);
}
ra_noweak(as, r);
return r;
}
/* Allocate two source registers for three-operand instructions. */
static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow)
{
IRIns *irl = IR(ir->op1), *irr = IR(ir->op2);
Reg left = irl->r, right = irr->r;
if (ra_hasreg(left)) {
ra_noweak(as, left);
if (ra_noreg(right))
right = ra_allocref(as, ir->op2, rset_exclude(allow, left));
else
ra_noweak(as, right);
} else if (ra_hasreg(right)) {
ra_noweak(as, right);
left = ra_allocref(as, ir->op1, rset_exclude(allow, right));
} else if (ra_hashint(right)) {
right = ra_allocref(as, ir->op2, allow);
left = ra_alloc1(as, ir->op1, rset_exclude(allow, right));
} else {
left = ra_allocref(as, ir->op1, allow);
right = ra_alloc1(as, ir->op2, rset_exclude(allow, left));
}
return left | (right << 8);
}
/* -- Guard handling ------------------------------------------------------ */
/* Setup exit stubs after the end of each trace. */
static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
{
ExitNo i;
MCode *mxp = as->mctop;
if (mxp - (nexits + 3 + MCLIM_REDZONE) < as->mclim)
asm_mclimit(as);
/* 1: mflr r0; bl ->vm_exit_handler; li r0, traceno; bl <1; bl <1; ... */
for (i = nexits-1; (int32_t)i >= 0; i--)
*--mxp = PPCI_BL|(((-3-i)&0x00ffffffu)<<2);
*--mxp = PPCI_LI|PPCF_T(RID_TMP)|as->T->traceno; /* Read by exit handler. */
mxp--;
*mxp = PPCI_BL|((((MCode *)(void *)lj_vm_exit_handler-mxp)&0x00ffffffu)<<2);
*--mxp = PPCI_MFLR|PPCF_T(RID_TMP);
as->mctop = mxp;
}
static MCode *asm_exitstub_addr(ASMState *as, ExitNo exitno)
{
/* Keep this in-sync with exitstub_trace_addr(). */
return as->mctop + exitno + 3;
}
/* Emit conditional branch to exit for guard. */
static void asm_guardcc(ASMState *as, PPCCC cc)
{
MCode *target = asm_exitstub_addr(as, as->snapno);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->loopinv = 1;
*p = PPCI_B | (((target-p) & 0x00ffffffu) << 2);
emit_condbranch(as, PPCI_BC, cc^4, p);
return;
}
emit_condbranch(as, PPCI_BC, cc, target);
}
/* -- Operand fusion ------------------------------------------------------ */
/* Limit linear search to this distance. Avoids O(n^2) behavior. */
#define CONFLICT_SEARCH_LIM 31
/* Check if there's no conflicting instruction between curins and ref. */
static int noconflict(ASMState *as, IRRef ref, IROp conflict)
{
IRIns *ir = as->ir;
IRRef i = as->curins;
if (i > ref + CONFLICT_SEARCH_LIM)
return 0; /* Give up, ref is too far away. */
while (--i > ref)
if (ir[i].o == conflict)
return 0; /* Conflict found. */
return 1; /* Ok, no conflict. */
}
/* Fuse the array base of colocated arrays. */
static int32_t asm_fuseabase(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE &&
!neverfuse(as) && noconflict(as, ref, IR_NEWREF))
return (int32_t)sizeof(GCtab);
return 0;
}
/* Indicates load/store indexed is ok. */
#define AHUREF_LSX ((int32_t)0x80000000)
/* Fuse array/hash/upvalue reference into register+offset operand. */
static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow)
{
IRIns *ir = IR(ref);
if (ra_noreg(ir->r)) {
if (ir->o == IR_AREF) {
if (mayfuse(as, ref)) {
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
ofs += 8*IR(ir->op2)->i;
if (checki16(ofs)) {
*ofsp = ofs;
return ra_alloc1(as, refa, allow);
}
}
if (*ofsp == AHUREF_LSX) {
Reg base = ra_alloc1(as, ir->op1, allow);
Reg idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base));
return base | (idx << 8);
}
}
} else if (ir->o == IR_HREFK) {
if (mayfuse(as, ref)) {
int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
if (checki16(ofs)) {
*ofsp = ofs;
return ra_alloc1(as, ir->op1, allow);
}
}
} else if (ir->o == IR_UREFC) {
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
int32_t ofs = i32ptr(&gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.tv);
int32_t jgl = (intptr_t)J2G(as->J);
if ((uint32_t)(ofs-jgl) < 65536) {
*ofsp = ofs-jgl-32768;
return RID_JGL;
} else {
*ofsp = (int16_t)ofs;
return ra_allock(as, ofs-(int16_t)ofs, allow);
}
}
}
}
*ofsp = 0;
return ra_alloc1(as, ref, allow);
}
/* Fuse XLOAD/XSTORE reference into load/store operand. */
static void asm_fusexref(ASMState *as, PPCIns pi, Reg rt, IRRef ref,
RegSet allow, int32_t ofs)
{
IRIns *ir = IR(ref);
Reg base;
if (ra_noreg(ir->r) && canfuse(as, ir)) {
if (ir->o == IR_ADD) {
int32_t ofs2;
if (irref_isk(ir->op2) && (ofs2 = ofs + IR(ir->op2)->i, checki16(ofs2))) {
ofs = ofs2;
ref = ir->op1;
} else if (ofs == 0) {
Reg right, left = ra_alloc2(as, ir, allow);
right = (left >> 8); left &= 255;
emit_fab(as, PPCI_LWZX | ((pi >> 20) & 0x780), rt, left, right);
return;
}
} else if (ir->o == IR_STRREF) {
lua_assert(ofs == 0);
ofs = (int32_t)sizeof(GCstr);
if (irref_isk(ir->op2)) {
ofs += IR(ir->op2)->i;
ref = ir->op1;
} else if (irref_isk(ir->op1)) {
ofs += IR(ir->op1)->i;
ref = ir->op2;
} else {
/* NYI: Fuse ADD with constant. */
Reg tmp, right, left = ra_alloc2(as, ir, allow);
right = (left >> 8); left &= 255;
tmp = ra_scratch(as, rset_exclude(rset_exclude(allow, left), right));
emit_fai(as, pi, rt, tmp, ofs);
emit_tab(as, PPCI_ADD, tmp, left, right);
return;
}
if (!checki16(ofs)) {
Reg left = ra_alloc1(as, ref, allow);
Reg right = ra_allock(as, ofs, rset_exclude(allow, left));
emit_fab(as, PPCI_LWZX | ((pi >> 20) & 0x780), rt, left, right);
return;
}
}
}
base = ra_alloc1(as, ref, allow);
emit_fai(as, pi, rt, base, ofs);
}
/* Fuse XLOAD/XSTORE reference into indexed-only load/store operand. */
static void asm_fusexrefx(ASMState *as, PPCIns pi, Reg rt, IRRef ref,
RegSet allow)
{
IRIns *ira = IR(ref);
Reg right, left;
if (canfuse(as, ira) && ira->o == IR_ADD && ra_noreg(ira->r)) {
left = ra_alloc2(as, ira, allow);
right = (left >> 8); left &= 255;
} else {
right = ra_alloc1(as, ref, allow);
left = RID_R0;
}
emit_tab(as, pi, rt, left, right);
}
/* Fuse to multiply-add/sub instruction. */
static int asm_fusemadd(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pir)
{
IRRef lref = ir->op1, rref = ir->op2;
IRIns *irm;
if (lref != rref &&
((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) &&
ra_noreg(irm->r)) ||
(mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) &&
(rref = lref, pi = pir, ra_noreg(irm->r))))) {
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg add = ra_alloc1(as, rref, RSET_FPR);
Reg right, left = ra_alloc2(as, irm, rset_exclude(RSET_FPR, add));
right = (left >> 8); left &= 255;
emit_facb(as, pi, dest, left, right, add);
return 1;
}
return 0;
}
/* -- Calls --------------------------------------------------------------- */
/* Generate a call to a C function. */
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
{
uint32_t n, nargs = CCI_NARGS(ci);
int32_t ofs = 8;
Reg gpr = REGARG_FIRSTGPR, fpr = REGARG_FIRSTFPR;
if ((void *)ci->func)
emit_call(as, (void *)ci->func);
for (n = 0; n < nargs; n++) { /* Setup args. */
IRRef ref = args[n];
if (ref) {
IRIns *ir = IR(ref);
if (irt_isfp(ir->t)) {
if (fpr <= REGARG_LASTFPR) {
lua_assert(rset_test(as->freeset, fpr)); /* Already evicted. */
ra_leftov(as, fpr, ref);
fpr++;
} else {
Reg r = ra_alloc1(as, ref, RSET_FPR);
if (irt_isnum(ir->t)) ofs = (ofs + 4) & ~4;
emit_spstore(as, ir, r, ofs);
ofs += irt_isnum(ir->t) ? 8 : 4;
}
} else {
if (gpr <= REGARG_LASTGPR) {
lua_assert(rset_test(as->freeset, gpr)); /* Already evicted. */
ra_leftov(as, gpr, ref);
gpr++;
} else {
Reg r = ra_alloc1(as, ref, RSET_GPR);
emit_spstore(as, ir, r, ofs);
ofs += 4;
}
}
} else {
if (gpr <= REGARG_LASTGPR)
gpr++;
else
ofs += 4;
}
checkmclim(as);
}
if ((ci->flags & CCI_VARARG)) /* Vararg calls need to know about FPR use. */
emit_tab(as, fpr == REGARG_FIRSTFPR ? PPCI_CRXOR : PPCI_CREQV, 6, 6, 6);
}
/* Setup result reg/sp for call. Evict scratch regs. */
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
RegSet drop = RSET_SCRATCH;
int hiop = ((ir+1)->o == IR_HIOP && !irt_isnil((ir+1)->t));
if ((ci->flags & CCI_NOFPRCLOBBER))
drop &= ~RSET_FPR;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
if (hiop && ra_hasreg((ir+1)->r))
rset_clear(drop, (ir+1)->r); /* Dest reg handled below. */
ra_evictset(as, drop); /* Evictions must be performed first. */
if (ra_used(ir)) {
lua_assert(!irt_ispri(ir->t));
if (irt_isfp(ir->t)) {
if ((ci->flags & CCI_CASTU64)) {
/* Use spill slot or temp slots. */
int32_t ofs = ir->s ? sps_scale(ir->s) : SPOFS_TMP;
Reg dest = ir->r;
if (ra_hasreg(dest)) {
ra_free(as, dest);
ra_modified(as, dest);
emit_fai(as, PPCI_LFD, dest, RID_SP, ofs);
}
emit_tai(as, PPCI_STW, RID_RETHI, RID_SP, ofs);
emit_tai(as, PPCI_STW, RID_RETLO, RID_SP, ofs+4);
} else {
ra_destreg(as, ir, RID_FPRET);
}
} else if (hiop) {
ra_destpair(as, ir);
} else {
ra_destreg(as, ir, RID_RET);
}
}
}
static void asm_call(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX];
const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
asm_collectargs(as, ir, ci, args);
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
static void asm_callx(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX*2];
CCallInfo ci;
IRRef func;
IRIns *irf;
ci.flags = asm_callx_flags(as, ir);
asm_collectargs(as, ir, &ci, args);
asm_setupresult(as, ir, &ci);
func = ir->op2; irf = IR(func);
if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); }
if (irref_isk(func)) { /* Call to constant address. */
ci.func = (ASMFunction)(void *)(irf->i);
} else { /* Need a non-argument register for indirect calls. */
RegSet allow = RSET_GPR & ~RSET_RANGE(RID_R0, REGARG_LASTGPR+1);
Reg freg = ra_alloc1(as, func, allow);
*--as->mcp = PPCI_BCTRL;
*--as->mcp = PPCI_MTCTR | PPCF_T(freg);
ci.func = (ASMFunction)(void *)0;
}
asm_gencall(as, &ci, args);
}
static void asm_callid(ASMState *as, IRIns *ir, IRCallID id)
{
const CCallInfo *ci = &lj_ir_callinfo[id];
IRRef args[2];
args[0] = ir->op1;
args[1] = ir->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
/* -- Returns ------------------------------------------------------------- */
/* Return to lower frame. Guard that it goes to the right spot. */
static void asm_retf(ASMState *as, IRIns *ir)
{
Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
void *pc = ir_kptr(IR(ir->op2));
int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
as->topslot -= (BCReg)delta;
if ((int32_t)as->topslot < 0) as->topslot = 0;
irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */
emit_setgl(as, base, jit_base);
emit_addptr(as, base, -8*delta);
asm_guardcc(as, CC_NE);
emit_ab(as, PPCI_CMPW, RID_TMP,
ra_allock(as, i32ptr(pc), rset_exclude(RSET_GPR, base)));
emit_tai(as, PPCI_LWZ, RID_TMP, base, -8);
}
/* -- Type conversions ---------------------------------------------------- */
static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
{
RegSet allow = RSET_FPR;
Reg tmp = ra_scratch(as, rset_clear(allow, left));
Reg fbias = ra_scratch(as, rset_clear(allow, tmp));
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg hibias = ra_allock(as, 0x43300000, rset_exclude(RSET_GPR, dest));
asm_guardcc(as, CC_NE);
emit_fab(as, PPCI_FCMPU, 0, tmp, left);
emit_fab(as, PPCI_FSUB, tmp, tmp, fbias);
emit_fai(as, PPCI_LFD, tmp, RID_SP, SPOFS_TMP);
emit_tai(as, PPCI_STW, RID_TMP, RID_SP, SPOFS_TMPLO);
emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI);
emit_asi(as, PPCI_XORIS, RID_TMP, dest, 0x8000);
emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO);
emit_lsptr(as, PPCI_LFS, (fbias & 31),
(void *)lj_ir_k64_find(as->J, U64x(59800004,59800000)),
RSET_GPR);
emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP);
emit_fb(as, PPCI_FCTIWZ, tmp, left);
}
static void asm_tobit(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_FPR;
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, allow);
Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left));
Reg tmp = ra_scratch(as, rset_clear(allow, right));
emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO);
emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP);
emit_fab(as, PPCI_FADD, tmp, left, right);
}
static void asm_conv(ASMState *as, IRIns *ir)
{
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
int stfp = (st == IRT_NUM || st == IRT_FLOAT);
IRRef lref = ir->op1;
lua_assert(irt_type(ir->t) != st);
lua_assert(!(irt_isint64(ir->t) ||
(st == IRT_I64 || st == IRT_U64))); /* Handled by SPLIT. */
if (irt_isfp(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
if (stfp) { /* FP to FP conversion. */
if (st == IRT_NUM) /* double -> float conversion. */
emit_fb(as, PPCI_FRSP, dest, ra_alloc1(as, lref, RSET_FPR));
else /* float -> double conversion is a no-op on PPC. */
ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */
} else { /* Integer to FP conversion. */
/* IRT_INT: Flip hibit, bias with 2^52, subtract 2^52+2^31. */
/* IRT_U32: Bias with 2^52, subtract 2^52. */
RegSet allow = RSET_GPR;
Reg left = ra_alloc1(as, lref, allow);
Reg hibias = ra_allock(as, 0x43300000, rset_clear(allow, left));
Reg fbias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
const float *kbias;
if (irt_isfloat(ir->t)) emit_fb(as, PPCI_FRSP, dest, dest);
emit_fab(as, PPCI_FSUB, dest, dest, fbias);
emit_fai(as, PPCI_LFD, dest, RID_SP, SPOFS_TMP);
kbias = (const float *)lj_ir_k64_find(as->J, U64x(59800004,59800000));
if (st == IRT_U32) kbias++;
emit_lsptr(as, PPCI_LFS, (fbias & 31), (void *)kbias,
rset_clear(allow, hibias));
emit_tai(as, PPCI_STW, st == IRT_U32 ? left : RID_TMP,
RID_SP, SPOFS_TMPLO);
emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI);
if (st != IRT_U32) emit_asi(as, PPCI_XORIS, RID_TMP, left, 0x8000);
}
} else if (stfp) { /* FP to integer conversion. */
if (irt_isguard(ir->t)) {
/* Checked conversions are only supported from number to int. */
lua_assert(irt_isint(ir->t) && st == IRT_NUM);
asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, lref, RSET_FPR);
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
if (irt_isu32(ir->t)) {
/* Convert both x and x-2^31 to int and merge results. */
Reg tmpi = ra_scratch(as, rset_exclude(RSET_GPR, dest));
emit_asb(as, PPCI_OR, dest, dest, tmpi); /* Select with mask idiom. */
emit_asb(as, PPCI_AND, tmpi, tmpi, RID_TMP);
emit_asb(as, PPCI_ANDC, dest, dest, RID_TMP);
emit_tai(as, PPCI_LWZ, tmpi, RID_SP, SPOFS_TMPLO); /* tmp = (int)(x) */
emit_tai(as, PPCI_ADDIS, dest, dest, 0x8000); /* dest += 2^31 */
emit_asb(as, PPCI_SRAWI, RID_TMP, dest, 31); /* mask = -(dest < 0) */
emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP);
emit_tai(as, PPCI_LWZ, dest,
RID_SP, SPOFS_TMPLO); /* dest = (int)(x-2^31) */
emit_fb(as, PPCI_FCTIWZ, tmp, left);
emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP);
emit_fb(as, PPCI_FCTIWZ, tmp, tmp);
emit_fab(as, PPCI_FSUB, tmp, left, tmp);
emit_lsptr(as, PPCI_LFS, (tmp & 31),
(void *)lj_ir_k64_find(as->J, U64x(4f000000,00000000)),
RSET_GPR);
} else {
emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO);
emit_fai(as, PPCI_STFD, tmp, RID_SP, SPOFS_TMP);
emit_fb(as, PPCI_FCTIWZ, tmp, left);
}
}
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
if ((ir->op2 & IRCONV_SEXT))
emit_as(as, st == IRT_I8 ? PPCI_EXTSB : PPCI_EXTSH, dest, left);
else
emit_rot(as, PPCI_RLWINM, dest, left, 0, st == IRT_U8 ? 24 : 16, 31);
} else { /* 32/64 bit integer conversions. */
/* Only need to handle 32/32 bit no-op (cast) on 32 bit archs. */
ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */
}
}
}
#if LJ_HASFFI
static void asm_conv64(ASMState *as, IRIns *ir)
{
IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
IRCallID id;
const CCallInfo *ci;
IRRef args[2];
args[0] = ir->op1;
args[1] = (ir-1)->op1;
if (st == IRT_NUM || st == IRT_FLOAT) {
id = IRCALL_fp64_d2l + ((st == IRT_FLOAT) ? 2 : 0) + (dt - IRT_I64);
ir--;
} else {
id = IRCALL_fp64_l2d + ((dt == IRT_FLOAT) ? 2 : 0) + (st - IRT_I64);
}
ci = &lj_ir_callinfo[id];
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
}
#endif
static void asm_strto(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num];
IRRef args[2];
int32_t ofs;
RegSet drop = RSET_SCRATCH;
if (ra_hasreg(ir->r)) rset_set(drop, ir->r); /* Spill dest reg (if any). */
ra_evictset(as, drop);
asm_guardcc(as, CC_EQ);
emit_ai(as, PPCI_CMPWI, RID_RET, 0); /* Test return status. */
args[0] = ir->op1; /* GCstr *str */
args[1] = ASMREF_TMP1; /* TValue *n */
asm_gencall(as, ci, args);
/* Store the result to the spill slot or temp slots. */
ofs = ir->s ? sps_scale(ir->s) : SPOFS_TMP;
emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_SP, ofs);
}
/* Get pointer to TValue. */
static void asm_tvptr(ASMState *as, Reg dest, IRRef ref)
{
IRIns *ir = IR(ref);
if (irt_isnum(ir->t)) {
if (irref_isk(ref)) /* Use the number constant itself as a TValue. */
ra_allockreg(as, i32ptr(ir_knum(ir)), dest);
else /* Otherwise force a spill and use the spill slot. */
emit_tai(as, PPCI_ADDI, dest, RID_SP, ra_spill(as, ir));
} else {
/* Otherwise use g->tmptv to hold the TValue. */
RegSet allow = rset_exclude(RSET_GPR, dest);
Reg type;
emit_tai(as, PPCI_ADDI, dest, RID_JGL, offsetof(global_State, tmptv)-32768);
if (!irt_ispri(ir->t)) {
Reg src = ra_alloc1(as, ref, allow);
emit_setgl(as, src, tmptv.gcr);
}
type = ra_allock(as, irt_toitype(ir->t), allow);
emit_setgl(as, type, tmptv.it);
}
}
static void asm_tostr(ASMState *as, IRIns *ir)
{
IRRef args[2];
args[0] = ASMREF_L;
as->gcsteps++;
if (irt_isnum(IR(ir->op1)->t) || (ir+1)->o == IR_HIOP) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
args[1] = ASMREF_TMP1; /* const lua_Number * */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op1);
} else {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
args[1] = ir->op1; /* int32_t k */
asm_setupresult(as, ir, ci); /* GCstr * */
asm_gencall(as, ci, args);
}
}
/* -- Memory references --------------------------------------------------- */
static void asm_aref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx, base;
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
ofs += 8*IR(ir->op2)->i;
if (checki16(ofs)) {
base = ra_alloc1(as, refa, RSET_GPR);
emit_tai(as, PPCI_ADDI, dest, base, ofs);
return;
}
}
base = ra_alloc1(as, ir->op1, RSET_GPR);
idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base));
emit_tab(as, PPCI_ADD, dest, RID_TMP, base);
emit_slwi(as, RID_TMP, idx, 3);
}
/* Inlined hash lookup. Specialized for key type and for const keys.
** The equivalent C code is:
** Node *n = hashkey(t, key);
** do {
** if (lj_obj_equal(&n->key, key)) return &n->val;
** } while ((n = nextnode(n)));
** return niltv(L);
*/
static void asm_href(ASMState *as, IRIns *ir, IROp merge)
{
RegSet allow = RSET_GPR;
int destused = ra_used(ir);
Reg dest = ra_dest(as, ir, allow);
Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
Reg key = RID_NONE, tmp1 = RID_TMP, tmp2;
Reg tisnum = RID_NONE, tmpnum = RID_NONE;
IRRef refkey = ir->op2;
IRIns *irkey = IR(refkey);
IRType1 kt = irkey->t;
uint32_t khash;
MCLabel l_end, l_loop, l_next;
rset_clear(allow, tab);
if (irt_isnum(kt)) {
key = ra_alloc1(as, refkey, RSET_FPR);
tmpnum = ra_scratch(as, rset_exclude(RSET_FPR, key));
tisnum = ra_allock(as, (int32_t)LJ_TISNUM, allow);
rset_clear(allow, tisnum);
} else if (!irt_ispri(kt)) {
key = ra_alloc1(as, refkey, allow);
rset_clear(allow, key);
}
tmp2 = ra_scratch(as, allow);
rset_clear(allow, tmp2);
/* Key not found in chain: jump to exit (if merged) or load niltv. */
l_end = emit_label(as);
as->invmcp = NULL;
if (merge == IR_NE)
asm_guardcc(as, CC_EQ);
else if (destused)
emit_loada(as, dest, niltvg(J2G(as->J)));
/* Follow hash chain until the end. */
l_loop = --as->mcp;
emit_ai(as, PPCI_CMPWI, dest, 0);
emit_tai(as, PPCI_LWZ, dest, dest, (int32_t)offsetof(Node, next));
l_next = emit_label(as);
/* Type and value comparison. */
if (merge == IR_EQ)
asm_guardcc(as, CC_EQ);
else
emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end);
if (irt_isnum(kt)) {
emit_fab(as, PPCI_FCMPU, 0, tmpnum, key);
emit_condbranch(as, PPCI_BC, CC_GE, l_next);
emit_ab(as, PPCI_CMPLW, tmp1, tisnum);
emit_fai(as, PPCI_LFD, tmpnum, dest, (int32_t)offsetof(Node, key.n));
} else {
if (!irt_ispri(kt)) {
emit_ab(as, PPCI_CMPW, tmp2, key);
emit_condbranch(as, PPCI_BC, CC_NE, l_next);
}
emit_ai(as, PPCI_CMPWI, tmp1, irt_toitype(irkey->t));
if (!irt_ispri(kt))
emit_tai(as, PPCI_LWZ, tmp2, dest, (int32_t)offsetof(Node, key.gcr));
}
emit_tai(as, PPCI_LWZ, tmp1, dest, (int32_t)offsetof(Node, key.it));
*l_loop = PPCI_BC | PPCF_Y | PPCF_CC(CC_NE) |
(((char *)as->mcp-(char *)l_loop) & 0xffffu);
/* Load main position relative to tab->node into dest. */
khash = irref_isk(refkey) ? ir_khash(irkey) : 1;
if (khash == 0) {
emit_tai(as, PPCI_LWZ, dest, tab, (int32_t)offsetof(GCtab, node));
} else {
Reg tmphash = tmp1;
if (irref_isk(refkey))
tmphash = ra_allock(as, khash, allow);
emit_tab(as, PPCI_ADD, dest, dest, tmp1);
emit_tai(as, PPCI_MULLI, tmp1, tmp1, sizeof(Node));
emit_asb(as, PPCI_AND, tmp1, tmp2, tmphash);
emit_tai(as, PPCI_LWZ, dest, tab, (int32_t)offsetof(GCtab, node));
emit_tai(as, PPCI_LWZ, tmp2, tab, (int32_t)offsetof(GCtab, hmask));
if (irref_isk(refkey)) {
/* Nothing to do. */
} else if (irt_isstr(kt)) {
emit_tai(as, PPCI_LWZ, tmp1, key, (int32_t)offsetof(GCstr, hash));
} else { /* Must match with hash*() in lj_tab.c. */
emit_tab(as, PPCI_SUBF, tmp1, tmp2, tmp1);
emit_rotlwi(as, tmp2, tmp2, HASH_ROT3);
emit_asb(as, PPCI_XOR, tmp1, tmp1, tmp2);
emit_rotlwi(as, tmp1, tmp1, (HASH_ROT2+HASH_ROT1)&31);
emit_tab(as, PPCI_SUBF, tmp2, dest, tmp2);
if (irt_isnum(kt)) {
int32_t ofs = ra_spill(as, irkey);
emit_asb(as, PPCI_XOR, tmp2, tmp2, tmp1);
emit_rotlwi(as, dest, tmp1, HASH_ROT1);
emit_tab(as, PPCI_ADD, tmp1, tmp1, tmp1);
emit_tai(as, PPCI_LWZ, tmp2, RID_SP, ofs+4);
emit_tai(as, PPCI_LWZ, tmp1, RID_SP, ofs);
} else {
emit_asb(as, PPCI_XOR, tmp2, key, tmp1);
emit_rotlwi(as, dest, tmp1, HASH_ROT1);
emit_tai(as, PPCI_ADDI, tmp1, tmp2, HASH_BIAS);
emit_tai(as, PPCI_ADDIS, tmp2, key, (HASH_BIAS + 32768)>>16);
}
}
}
}
static void asm_hrefk(ASMState *as, IRIns *ir)
{
IRIns *kslot = IR(ir->op2);
IRIns *irkey = IR(kslot->op1);
int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
int32_t kofs = ofs + (int32_t)offsetof(Node, key);
Reg dest = (ra_used(ir)||ofs > 32736) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
Reg key = RID_NONE, type = RID_TMP, idx = node;
RegSet allow = rset_exclude(RSET_GPR, node);
lua_assert(ofs % sizeof(Node) == 0);
if (ofs > 32736) {
idx = dest;
rset_clear(allow, dest);
kofs = (int32_t)offsetof(Node, key);
} else if (ra_hasreg(dest)) {
emit_tai(as, PPCI_ADDI, dest, node, ofs);
}
asm_guardcc(as, CC_NE);
if (!irt_ispri(irkey->t)) {
key = ra_scratch(as, allow);
rset_clear(allow, key);
}
rset_clear(allow, type);
if (irt_isnum(irkey->t)) {
emit_cmpi(as, key, (int32_t)ir_knum(irkey)->u32.lo);
asm_guardcc(as, CC_NE);
emit_cmpi(as, type, (int32_t)ir_knum(irkey)->u32.hi);
} else {
if (ra_hasreg(key)) {
emit_cmpi(as, key, irkey->i); /* May use RID_TMP, i.e. type. */
asm_guardcc(as, CC_NE);
}
emit_ai(as, PPCI_CMPWI, type, irt_toitype(irkey->t));
}
if (ra_hasreg(key)) emit_tai(as, PPCI_LWZ, key, idx, kofs+4);
emit_tai(as, PPCI_LWZ, type, idx, kofs);
if (ofs > 32736) {
emit_tai(as, PPCI_ADDIS, dest, dest, (ofs + 32768) >> 16);
emit_tai(as, PPCI_ADDI, dest, node, ofs);
}
}
static void asm_newref(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
IRRef args[3];
if (ir->r == RID_SINK)
return;
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* GCtab *t */
args[2] = ASMREF_TMP1; /* cTValue *key */
asm_setupresult(as, ir, ci); /* TValue * */
asm_gencall(as, ci, args);
asm_tvptr(as, ra_releasetmp(as, ASMREF_TMP1), ir->op2);
}
static void asm_uref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
emit_lsptr(as, PPCI_LWZ, dest, v, RSET_GPR);
} else {
Reg uv = ra_scratch(as, RSET_GPR);
Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
if (ir->o == IR_UREFC) {
asm_guardcc(as, CC_NE);
emit_ai(as, PPCI_CMPWI, RID_TMP, 1);
emit_tai(as, PPCI_ADDI, dest, uv, (int32_t)offsetof(GCupval, tv));
emit_tai(as, PPCI_LBZ, RID_TMP, uv, (int32_t)offsetof(GCupval, closed));
} else {
emit_tai(as, PPCI_LWZ, dest, uv, (int32_t)offsetof(GCupval, v));
}
emit_tai(as, PPCI_LWZ, uv, func,
(int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
}
}
static void asm_fref(ASMState *as, IRIns *ir)
{
UNUSED(as); UNUSED(ir);
lua_assert(!ra_used(ir));
}
static void asm_strref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
IRRef ref = ir->op2, refk = ir->op1;
int32_t ofs = (int32_t)sizeof(GCstr);
Reg r;
if (irref_isk(ref)) {
IRRef tmp = refk; refk = ref; ref = tmp;
} else if (!irref_isk(refk)) {
Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR);
IRIns *irr = IR(ir->op2);
if (ra_hasreg(irr->r)) {
ra_noweak(as, irr->r);
right = irr->r;
} else if (mayfuse(as, irr->op2) &&
irr->o == IR_ADD && irref_isk(irr->op2) &&
checki16(ofs + IR(irr->op2)->i)) {
ofs += IR(irr->op2)->i;
right = ra_alloc1(as, irr->op1, rset_exclude(RSET_GPR, left));
} else {
right = ra_allocref(as, ir->op2, rset_exclude(RSET_GPR, left));
}
emit_tai(as, PPCI_ADDI, dest, dest, ofs);
emit_tab(as, PPCI_ADD, dest, left, right);
return;
}
r = ra_alloc1(as, ref, RSET_GPR);
ofs += IR(refk)->i;
if (checki16(ofs))
emit_tai(as, PPCI_ADDI, dest, r, ofs);
else
emit_tab(as, PPCI_ADD, dest, r,
ra_allock(as, ofs, rset_exclude(RSET_GPR, r)));
}
/* -- Loads and stores ---------------------------------------------------- */
static PPCIns asm_fxloadins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: return PPCI_LBZ; /* Needs sign-extension. */
case IRT_U8: return PPCI_LBZ;
case IRT_I16: return PPCI_LHA;
case IRT_U16: return PPCI_LHZ;
case IRT_NUM: return PPCI_LFD;
case IRT_FLOAT: return PPCI_LFS;
default: return PPCI_LWZ;
}
}
static PPCIns asm_fxstoreins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: case IRT_U8: return PPCI_STB;
case IRT_I16: case IRT_U16: return PPCI_STH;
case IRT_NUM: return PPCI_STFD;
case IRT_FLOAT: return PPCI_STFS;
default: return PPCI_STW;
}
}
static void asm_fload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx = ra_alloc1(as, ir->op1, RSET_GPR);
PPCIns pi = asm_fxloadins(ir);
int32_t ofs;
if (ir->op2 == IRFL_TAB_ARRAY) {
ofs = asm_fuseabase(as, ir->op1);
if (ofs) { /* Turn the t->array load into an add for colocated arrays. */
emit_tai(as, PPCI_ADDI, dest, idx, ofs);
return;
}
}
ofs = field_ofs[ir->op2];
lua_assert(!irt_isi8(ir->t));
emit_tai(as, pi, dest, idx, ofs);
}
static void asm_fstore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
IRIns *irf = IR(ir->op1);
Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src));
int32_t ofs = field_ofs[irf->op2];
PPCIns pi = asm_fxstoreins(ir);
emit_tai(as, pi, src, idx, ofs);
}
}
static void asm_xload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED));
if (irt_isi8(ir->t))
emit_as(as, PPCI_EXTSB, dest, dest);
asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR, 0);
}
static void asm_xstore(ASMState *as, IRIns *ir, int32_t ofs)
{
IRIns *irb;
if (ir->r == RID_SINK)
return;
if (ofs == 0 && mayfuse(as, ir->op2) && (irb = IR(ir->op2))->o == IR_BSWAP &&
ra_noreg(irb->r) && (irt_isint(ir->t) || irt_isu32(ir->t))) {
/* Fuse BSWAP with XSTORE to stwbrx. */
Reg src = ra_alloc1(as, irb->op1, RSET_GPR);
asm_fusexrefx(as, PPCI_STWBRX, src, ir->op1, rset_exclude(RSET_GPR, src));
} else {
Reg src = ra_alloc1(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1,
rset_exclude(RSET_GPR, src), ofs);
}
}
static void asm_ahuvload(ASMState *as, IRIns *ir)
{
IRType1 t = ir->t;
Reg dest = RID_NONE, type = RID_TMP, tmp = RID_TMP, idx;
RegSet allow = RSET_GPR;
int32_t ofs = AHUREF_LSX;
if (ra_used(ir)) {
lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
if (!irt_isnum(t)) ofs = 0;
dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR);
rset_clear(allow, dest);
}
idx = asm_fuseahuref(as, ir->op1, &ofs, allow);
if (irt_isnum(t)) {
Reg tisnum = ra_allock(as, (int32_t)LJ_TISNUM, rset_exclude(allow, idx));
asm_guardcc(as, CC_GE);
emit_ab(as, PPCI_CMPLW, type, tisnum);
if (ra_hasreg(dest)) {
if (ofs == AHUREF_LSX) {
tmp = ra_scratch(as, rset_exclude(rset_exclude(RSET_GPR,
(idx&255)), (idx>>8)));
emit_fab(as, PPCI_LFDX, dest, (idx&255), tmp);
} else {
emit_fai(as, PPCI_LFD, dest, idx, ofs);
}
}
} else {
asm_guardcc(as, CC_NE);
emit_ai(as, PPCI_CMPWI, type, irt_toitype(t));
if (ra_hasreg(dest)) emit_tai(as, PPCI_LWZ, dest, idx, ofs+4);
}
if (ofs == AHUREF_LSX) {
emit_tab(as, PPCI_LWZX, type, (idx&255), tmp);
emit_slwi(as, tmp, (idx>>8), 3);
} else {
emit_tai(as, PPCI_LWZ, type, idx, ofs);
}
}
static void asm_ahustore(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_GPR;
Reg idx, src = RID_NONE, type = RID_NONE;
int32_t ofs = AHUREF_LSX;
if (ir->r == RID_SINK)
return;
if (irt_isnum(ir->t)) {
src = ra_alloc1(as, ir->op2, RSET_FPR);
} else {
if (!irt_ispri(ir->t)) {
src = ra_alloc1(as, ir->op2, allow);
rset_clear(allow, src);
ofs = 0;
}
type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow);
rset_clear(allow, type);
}
idx = asm_fuseahuref(as, ir->op1, &ofs, allow);
if (irt_isnum(ir->t)) {
if (ofs == AHUREF_LSX) {
emit_fab(as, PPCI_STFDX, src, (idx&255), RID_TMP);
emit_slwi(as, RID_TMP, (idx>>8), 3);
} else {
emit_fai(as, PPCI_STFD, src, idx, ofs);
}
} else {
if (ra_hasreg(src))
emit_tai(as, PPCI_STW, src, idx, ofs+4);
if (ofs == AHUREF_LSX) {
emit_tab(as, PPCI_STWX, type, (idx&255), RID_TMP);
emit_slwi(as, RID_TMP, (idx>>8), 3);
} else {
emit_tai(as, PPCI_STW, type, idx, ofs);
}
}
}
static void asm_sload(ASMState *as, IRIns *ir)
{
int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 0 : 4);
IRType1 t = ir->t;
Reg dest = RID_NONE, type = RID_NONE, base;
RegSet allow = RSET_GPR;
lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
lua_assert(LJ_DUALNUM ||
!irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
dest = ra_scratch(as, RSET_FPR);
asm_tointg(as, ir, dest);
t.irt = IRT_NUM; /* Continue with a regular number type check. */
} else if (ra_used(ir)) {
lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : RSET_GPR);
rset_clear(allow, dest);
base = ra_alloc1(as, REF_BASE, allow);
rset_clear(allow, base);
if ((ir->op2 & IRSLOAD_CONVERT)) {
if (irt_isint(t)) {
emit_tai(as, PPCI_LWZ, dest, RID_SP, SPOFS_TMPLO);
dest = ra_scratch(as, RSET_FPR);
emit_fai(as, PPCI_STFD, dest, RID_SP, SPOFS_TMP);
emit_fb(as, PPCI_FCTIWZ, dest, dest);
t.irt = IRT_NUM; /* Check for original type. */
} else {
Reg tmp = ra_scratch(as, allow);
Reg hibias = ra_allock(as, 0x43300000, rset_clear(allow, tmp));
Reg fbias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
emit_fab(as, PPCI_FSUB, dest, dest, fbias);
emit_fai(as, PPCI_LFD, dest, RID_SP, SPOFS_TMP);
emit_lsptr(as, PPCI_LFS, (fbias & 31),
(void *)lj_ir_k64_find(as->J, U64x(59800004,59800000)),
rset_clear(allow, hibias));
emit_tai(as, PPCI_STW, tmp, RID_SP, SPOFS_TMPLO);
emit_tai(as, PPCI_STW, hibias, RID_SP, SPOFS_TMPHI);
emit_asi(as, PPCI_XORIS, tmp, tmp, 0x8000);
dest = tmp;
t.irt = IRT_INT; /* Check for original type. */
}
}
goto dotypecheck;
}
base = ra_alloc1(as, REF_BASE, allow);
rset_clear(allow, base);
dotypecheck:
if (irt_isnum(t)) {
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
Reg tisnum = ra_allock(as, (int32_t)LJ_TISNUM, allow);
asm_guardcc(as, CC_GE);
emit_ab(as, PPCI_CMPLW, RID_TMP, tisnum);
type = RID_TMP;
}
if (ra_hasreg(dest)) emit_fai(as, PPCI_LFD, dest, base, ofs-4);
} else {
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
asm_guardcc(as, CC_NE);
emit_ai(as, PPCI_CMPWI, RID_TMP, irt_toitype(t));
type = RID_TMP;
}
if (ra_hasreg(dest)) emit_tai(as, PPCI_LWZ, dest, base, ofs);
}
if (ra_hasreg(type)) emit_tai(as, PPCI_LWZ, type, base, ofs-4);
}
/* -- Allocations --------------------------------------------------------- */
#if LJ_HASFFI
static void asm_cnew(ASMState *as, IRIns *ir)
{
CTState *cts = ctype_ctsG(J2G(as->J));
CTypeID ctypeid = (CTypeID)IR(ir->op1)->i;
CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
lj_ctype_size(cts, ctypeid) : (CTSize)IR(ir->op2)->i;
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
IRRef args[2];
RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
RegSet drop = RSET_SCRATCH;
lua_assert(sz != CTSIZE_INVALID);
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* MSize size */
as->gcsteps++;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop);
if (ra_used(ir))
ra_destreg(as, ir, RID_RET); /* GCcdata * */
/* Initialize immutable cdata object. */
if (ir->o == IR_CNEWI) {
int32_t ofs = sizeof(GCcdata);
lua_assert(sz == 4 || sz == 8);
if (sz == 8) {
ofs += 4;
lua_assert((ir+1)->o == IR_HIOP);
}
for (;;) {
Reg r = ra_alloc1(as, ir->op2, allow);
emit_tai(as, PPCI_STW, r, RID_RET, ofs);
rset_clear(allow, r);
if (ofs == sizeof(GCcdata)) break;
ofs -= 4; ir++;
}
}
/* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */
emit_tai(as, PPCI_STB, RID_RET+1, RID_RET, offsetof(GCcdata, gct));
emit_tai(as, PPCI_STH, RID_TMP, RID_RET, offsetof(GCcdata, ctypeid));
emit_ti(as, PPCI_LI, RID_RET+1, ~LJ_TCDATA);
emit_ti(as, PPCI_LI, RID_TMP, ctypeid); /* Lower 16 bit used. Sign-ext ok. */
asm_gencall(as, ci, args);
ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)),
ra_releasetmp(as, ASMREF_TMP1));
}
#else
#define asm_cnew(as, ir) ((void)0)
#endif
/* -- Write barriers ------------------------------------------------------ */
static void asm_tbar(ASMState *as, IRIns *ir)
{
Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
Reg mark = ra_scratch(as, rset_exclude(RSET_GPR, tab));
Reg link = RID_TMP;
MCLabel l_end = emit_label(as);
emit_tai(as, PPCI_STW, link, tab, (int32_t)offsetof(GCtab, gclist));
emit_tai(as, PPCI_STB, mark, tab, (int32_t)offsetof(GCtab, marked));
emit_setgl(as, tab, gc.grayagain);
lua_assert(LJ_GC_BLACK == 0x04);
emit_rot(as, PPCI_RLWINM, mark, mark, 0, 30, 28); /* Clear black bit. */
emit_getgl(as, link, gc.grayagain);
emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end);
emit_asi(as, PPCI_ANDIDOT, RID_TMP, mark, LJ_GC_BLACK);
emit_tai(as, PPCI_LBZ, mark, tab, (int32_t)offsetof(GCtab, marked));
}
static void asm_obar(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
IRRef args[2];
MCLabel l_end;
Reg obj, val, tmp;
/* No need for other object barriers (yet). */
lua_assert(IR(ir->op1)->o == IR_UREFC);
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ir->op1; /* TValue *tv */
asm_gencall(as, ci, args);
emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768);
obj = IR(ir->op1)->r;
tmp = ra_scratch(as, rset_exclude(RSET_GPR, obj));
emit_condbranch(as, PPCI_BC|PPCF_Y, CC_EQ, l_end);
emit_asi(as, PPCI_ANDIDOT, tmp, tmp, LJ_GC_BLACK);
emit_condbranch(as, PPCI_BC, CC_EQ, l_end);
emit_asi(as, PPCI_ANDIDOT, RID_TMP, RID_TMP, LJ_GC_WHITES);
val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj));
emit_tai(as, PPCI_LBZ, tmp, obj,
(int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
emit_tai(as, PPCI_LBZ, RID_TMP, val, (int32_t)offsetof(GChead, marked));
}
/* -- Arithmetic and logic operations ------------------------------------- */
static void asm_fparith(ASMState *as, IRIns *ir, PPCIns pi)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
if (pi == PPCI_FMUL)
emit_fac(as, pi, dest, left, right);
else
emit_fab(as, pi, dest, left, right);
}
static void asm_fpunary(ASMState *as, IRIns *ir, PPCIns pi)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR);
emit_fb(as, pi, dest, left);
}
static int asm_fpjoin_pow(ASMState *as, IRIns *ir)
{
IRIns *irp = IR(ir->op1);
if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
IRIns *irpp = IR(irp->op1);
if (irpp == ir-2 && irpp->o == IR_FPMATH &&
irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_pow];
IRRef args[2];
args[0] = irpp->op1;
args[1] = irp->op2;
asm_setupresult(as, ir, ci);
asm_gencall(as, ci, args);
return 1;
}
}
return 0;
}
static void asm_add(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
if (!asm_fusemadd(as, ir, PPCI_FMADD, PPCI_FMADD))
asm_fparith(as, ir, PPCI_FADD);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
PPCIns pi;
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (checki16(k)) {
pi = PPCI_ADDI;
/* May fail due to spills/restores above, but simplifies the logic. */
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi = PPCI_ADDICDOT;
}
emit_tai(as, pi, dest, left, k);
return;
} else if ((k & 0xffff) == 0) {
emit_tai(as, PPCI_ADDIS, dest, left, (k >> 16));
return;
} else if (!as->sectref) {
emit_tai(as, PPCI_ADDIS, dest, dest, (k + 32768) >> 16);
emit_tai(as, PPCI_ADDI, dest, left, k);
return;
}
}
pi = PPCI_ADD;
/* May fail due to spills/restores above, but simplifies the logic. */
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi |= PPCF_DOT;
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_tab(as, pi, dest, left, right);
}
}
static void asm_sub(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
if (!asm_fusemadd(as, ir, PPCI_FMSUB, PPCI_FNMSUB))
asm_fparith(as, ir, PPCI_FSUB);
} else {
PPCIns pi = PPCI_SUBF;
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left, right;
if (irref_isk(ir->op1)) {
int32_t k = IR(ir->op1)->i;
if (checki16(k)) {
right = ra_alloc1(as, ir->op2, RSET_GPR);
emit_tai(as, PPCI_SUBFIC, dest, right, k);
return;
}
}
/* May fail due to spills/restores above, but simplifies the logic. */
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi |= PPCF_DOT;
}
left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_tab(as, pi, dest, right, left); /* Subtract right _from_ left. */
}
}
static void asm_mul(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fparith(as, ir, PPCI_FMUL);
} else {
PPCIns pi = PPCI_MULLW;
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (checki16(k)) {
emit_tai(as, PPCI_MULLI, dest, left, k);
return;
}
}
/* May fail due to spills/restores above, but simplifies the logic. */
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi |= PPCF_DOT;
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_tab(as, pi, dest, left, right);
}
}
static void asm_neg(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fpunary(as, ir, PPCI_FNEG);
} else {
Reg dest, left;
PPCIns pi = PPCI_NEG;
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi |= PPCF_DOT;
}
dest = ra_dest(as, ir, RSET_GPR);
left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
emit_tab(as, pi, dest, left, 0);
}
}
static void asm_arithov(ASMState *as, IRIns *ir, PPCIns pi)
{
Reg dest, left, right;
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
}
asm_guardcc(as, CC_SO);
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
if (pi == PPCI_SUBFO) { Reg tmp = left; left = right; right = tmp; }
emit_tab(as, pi|PPCF_DOT, dest, left, right);
}
#if LJ_HASFFI
static void asm_add64(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_alloc1(as, ir->op1, RSET_GPR);
PPCIns pi = PPCI_ADDE;
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (k == 0)
pi = PPCI_ADDZE;
else if (k == -1)
pi = PPCI_ADDME;
else
goto needright;
right = 0;
} else {
needright:
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
}
emit_tab(as, pi, dest, left, right);
ir--;
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc1(as, ir->op1, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (checki16(k)) {
emit_tai(as, PPCI_ADDIC, dest, left, k);
return;
}
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_tab(as, PPCI_ADDC, dest, left, right);
}
static void asm_sub64(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left, right = ra_alloc1(as, ir->op2, RSET_GPR);
PPCIns pi = PPCI_SUBFE;
if (irref_isk(ir->op1)) {
int32_t k = IR(ir->op1)->i;
if (k == 0)
pi = PPCI_SUBFZE;
else if (k == -1)
pi = PPCI_SUBFME;
else
goto needleft;
left = 0;
} else {
needleft:
left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, right));
}
emit_tab(as, pi, dest, right, left); /* Subtract right _from_ left. */
ir--;
dest = ra_dest(as, ir, RSET_GPR);
right = ra_alloc1(as, ir->op2, RSET_GPR);
if (irref_isk(ir->op1)) {
int32_t k = IR(ir->op1)->i;
if (checki16(k)) {
emit_tai(as, PPCI_SUBFIC, dest, right, k);
return;
}
}
left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, right));
emit_tab(as, PPCI_SUBFC, dest, right, left);
}
static void asm_neg64(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
emit_tab(as, PPCI_SUBFZE, dest, left, 0);
ir--;
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc1(as, ir->op1, RSET_GPR);
emit_tai(as, PPCI_SUBFIC, dest, left, 0);
}
#endif
static void asm_bitnot(ASMState *as, IRIns *ir)
{
Reg dest, left, right;
PPCIns pi = PPCI_NOR;
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi |= PPCF_DOT;
}
dest = ra_dest(as, ir, RSET_GPR);
if (mayfuse(as, ir->op1)) {
IRIns *irl = IR(ir->op1);
if (irl->o == IR_BAND)
pi ^= (PPCI_NOR ^ PPCI_NAND);
else if (irl->o == IR_BXOR)
pi ^= (PPCI_NOR ^ PPCI_EQV);
else if (irl->o != IR_BOR)
goto nofuse;
left = ra_hintalloc(as, irl->op1, dest, RSET_GPR);
right = ra_alloc1(as, irl->op2, rset_exclude(RSET_GPR, left));
} else {
nofuse:
left = right = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
}
emit_asb(as, pi, dest, left, right);
}
static void asm_bitswap(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
IRIns *irx;
if (mayfuse(as, ir->op1) && (irx = IR(ir->op1))->o == IR_XLOAD &&
ra_noreg(irx->r) && (irt_isint(irx->t) || irt_isu32(irx->t))) {
/* Fuse BSWAP with XLOAD to lwbrx. */
asm_fusexrefx(as, PPCI_LWBRX, dest, irx->op1, RSET_GPR);
} else {
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
Reg tmp = dest;
if (tmp == left) {
tmp = RID_TMP;
emit_mr(as, dest, RID_TMP);
}
emit_rot(as, PPCI_RLWIMI, tmp, left, 24, 16, 23);
emit_rot(as, PPCI_RLWIMI, tmp, left, 24, 0, 7);
emit_rotlwi(as, tmp, left, 8);
}
}
static void asm_bitop(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pik)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg right, left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
Reg tmp = left;
if ((checku16(k) || (k & 0xffff) == 0) || (tmp = dest, !as->sectref)) {
if (!checku16(k)) {
emit_asi(as, pik ^ (PPCI_ORI ^ PPCI_ORIS), dest, tmp, (k >> 16));
if ((k & 0xffff) == 0) return;
}
emit_asi(as, pik, dest, left, k);
return;
}
}
/* May fail due to spills/restores above, but simplifies the logic. */
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
pi |= PPCF_DOT;
}
right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_asb(as, pi, dest, left, right);
}
/* Fuse BAND with contiguous bitmask and a shift to rlwinm. */
static void asm_fuseandsh(ASMState *as, PPCIns pi, int32_t mask, IRRef ref)
{
IRIns *ir;
Reg left;
if (mayfuse(as, ref) && (ir = IR(ref), ra_noreg(ir->r)) &&
irref_isk(ir->op2) && ir->o >= IR_BSHL && ir->o <= IR_BROR) {
int32_t sh = (IR(ir->op2)->i & 31);
switch (ir->o) {
case IR_BSHL:
if ((mask & ((1u<<sh)-1))) goto nofuse;
break;
case IR_BSHR:
if ((mask & ~((~0u)>>sh))) goto nofuse;
sh = ((32-sh)&31);
break;
case IR_BROL:
break;
default:
goto nofuse;
}
left = ra_alloc1(as, ir->op1, RSET_GPR);
*--as->mcp = pi | PPCF_T(left) | PPCF_B(sh);
return;
}
nofuse:
left = ra_alloc1(as, ref, RSET_GPR);
*--as->mcp = pi | PPCF_T(left);
}
static void asm_bitand(ASMState *as, IRIns *ir)
{
Reg dest, left, right;
IRRef lref = ir->op1;
PPCIns dot = 0;
IRRef op2;
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
dot = PPCF_DOT;
}
dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op2)) {
int32_t k = IR(ir->op2)->i;
if (k) {
/* First check for a contiguous bitmask as used by rlwinm. */
uint32_t s1 = lj_ffs((uint32_t)k);
uint32_t k1 = ((uint32_t)k >> s1);
if ((k1 & (k1+1)) == 0) {
asm_fuseandsh(as, PPCI_RLWINM|dot | PPCF_A(dest) |
PPCF_MB(31-lj_fls((uint32_t)k)) | PPCF_ME(31-s1),
k, lref);
return;
}
if (~(uint32_t)k) {
uint32_t s2 = lj_ffs(~(uint32_t)k);
uint32_t k2 = (~(uint32_t)k >> s2);
if ((k2 & (k2+1)) == 0) {
asm_fuseandsh(as, PPCI_RLWINM|dot | PPCF_A(dest) |
PPCF_MB(32-s2) | PPCF_ME(30-lj_fls(~(uint32_t)k)),
k, lref);
return;
}
}
}
if (checku16(k)) {
left = ra_alloc1(as, lref, RSET_GPR);
emit_asi(as, PPCI_ANDIDOT, dest, left, k);
return;
} else if ((k & 0xffff) == 0) {
left = ra_alloc1(as, lref, RSET_GPR);
emit_asi(as, PPCI_ANDISDOT, dest, left, (k >> 16));
return;
}
}
op2 = ir->op2;
if (mayfuse(as, op2) && IR(op2)->o == IR_BNOT && ra_noreg(IR(op2)->r)) {
dot ^= (PPCI_AND ^ PPCI_ANDC);
op2 = IR(op2)->op1;
}
left = ra_hintalloc(as, lref, dest, RSET_GPR);
right = ra_alloc1(as, op2, rset_exclude(RSET_GPR, left));
emit_asb(as, PPCI_AND ^ dot, dest, left, right);
}
static void asm_bitshift(ASMState *as, IRIns *ir, PPCIns pi, PPCIns pik)
{
Reg dest, left;
Reg dot = 0;
if (as->flagmcp == as->mcp) {
as->flagmcp = NULL;
as->mcp++;
dot = PPCF_DOT;
}
dest = ra_dest(as, ir, RSET_GPR);
left = ra_alloc1(as, ir->op1, RSET_GPR);
if (irref_isk(ir->op2)) { /* Constant shifts. */
int32_t shift = (IR(ir->op2)->i & 31);
if (pik == 0) /* SLWI */
emit_rot(as, PPCI_RLWINM|dot, dest, left, shift, 0, 31-shift);
else if (pik == 1) /* SRWI */
emit_rot(as, PPCI_RLWINM|dot, dest, left, (32-shift)&31, shift, 31);
else
emit_asb(as, pik|dot, dest, left, shift);
} else {
Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_asb(as, pi|dot, dest, left, right);
}
}
static void asm_min_max(ASMState *as, IRIns *ir, int ismax)
{
if (irt_isnum(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg tmp = dest;
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
if (tmp == left || tmp == right)
tmp = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_FPR,
dest), left), right));
emit_facb(as, PPCI_FSEL, dest, tmp,
ismax ? left : right, ismax ? right : left);
emit_fab(as, PPCI_FSUB, tmp, left, right);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg tmp1 = RID_TMP, tmp2 = dest;
Reg right, left = ra_alloc2(as, ir, RSET_GPR);
right = (left >> 8); left &= 255;
if (tmp2 == left || tmp2 == right)
tmp2 = ra_scratch(as, rset_exclude(rset_exclude(rset_exclude(RSET_GPR,
dest), left), right));
emit_tab(as, PPCI_ADD, dest, tmp2, right);
emit_asb(as, ismax ? PPCI_ANDC : PPCI_AND, tmp2, tmp2, tmp1);
emit_tab(as, PPCI_SUBFE, tmp1, tmp1, tmp1);
emit_tab(as, PPCI_SUBFC, tmp2, tmp2, tmp1);
emit_asi(as, PPCI_XORIS, tmp2, right, 0x8000);
emit_asi(as, PPCI_XORIS, tmp1, left, 0x8000);
}
}
/* -- Comparisons --------------------------------------------------------- */
#define CC_UNSIGNED 0x08 /* Unsigned integer comparison. */
#define CC_TWO 0x80 /* Check two flags for FP comparison. */
/* Map of comparisons to flags. ORDER IR. */
static const uint8_t asm_compmap[IR_ABC+1] = {
/* op int cc FP cc */
/* LT */ CC_GE + (CC_GE<<4),
/* GE */ CC_LT + (CC_LE<<4) + CC_TWO,
/* LE */ CC_GT + (CC_GE<<4) + CC_TWO,
/* GT */ CC_LE + (CC_LE<<4),
/* ULT */ CC_GE + CC_UNSIGNED + (CC_GT<<4) + CC_TWO,
/* UGE */ CC_LT + CC_UNSIGNED + (CC_LT<<4),
/* ULE */ CC_GT + CC_UNSIGNED + (CC_GT<<4),
/* UGT */ CC_LE + CC_UNSIGNED + (CC_LT<<4) + CC_TWO,
/* EQ */ CC_NE + (CC_NE<<4),
/* NE */ CC_EQ + (CC_EQ<<4),
/* ABC */ CC_LE + CC_UNSIGNED + (CC_LT<<4) + CC_TWO /* Same as UGT. */
};
static void asm_intcomp_(ASMState *as, IRRef lref, IRRef rref, Reg cr, PPCCC cc)
{
Reg right, left = ra_alloc1(as, lref, RSET_GPR);
if (irref_isk(rref)) {
int32_t k = IR(rref)->i;
if ((cc & CC_UNSIGNED) == 0) { /* Signed comparison with constant. */
if (checki16(k)) {
emit_tai(as, PPCI_CMPWI, cr, left, k);
/* Signed comparison with zero and referencing previous ins? */
if (k == 0 && lref == as->curins-1)
as->flagmcp = as->mcp; /* Allow elimination of the compare. */
return;
} else if ((cc & 3) == (CC_EQ & 3)) { /* Use CMPLWI for EQ or NE. */
if (checku16(k)) {
emit_tai(as, PPCI_CMPLWI, cr, left, k);
return;
} else if (!as->sectref && ra_noreg(IR(rref)->r)) {
emit_tai(as, PPCI_CMPLWI, cr, RID_TMP, k);
emit_asi(as, PPCI_XORIS, RID_TMP, left, (k >> 16));
return;
}
}
} else { /* Unsigned comparison with constant. */
if (checku16(k)) {
emit_tai(as, PPCI_CMPLWI, cr, left, k);
return;
}
}
}
right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, left));
emit_tab(as, (cc & CC_UNSIGNED) ? PPCI_CMPLW : PPCI_CMPW, cr, left, right);
}
static void asm_comp(ASMState *as, IRIns *ir)
{
PPCCC cc = asm_compmap[ir->o];
if (irt_isnum(ir->t)) {
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
asm_guardcc(as, (cc >> 4));
if ((cc & CC_TWO))
emit_tab(as, PPCI_CROR, ((cc>>4)&3), ((cc>>4)&3), (CC_EQ&3));
emit_fab(as, PPCI_FCMPU, 0, left, right);
} else {
IRRef lref = ir->op1, rref = ir->op2;
if (irref_isk(lref) && !irref_isk(rref)) {
/* Swap constants to the right (only for ABC). */
IRRef tmp = lref; lref = rref; rref = tmp;
if ((cc & 2) == 0) cc ^= 1; /* LT <-> GT, LE <-> GE */
}
asm_guardcc(as, cc);
asm_intcomp_(as, lref, rref, 0, cc);
}
}
#if LJ_HASFFI
/* 64 bit integer comparisons. */
static void asm_comp64(ASMState *as, IRIns *ir)
{
PPCCC cc = asm_compmap[(ir-1)->o];
if ((cc&3) == (CC_EQ&3)) {
asm_guardcc(as, cc);
emit_tab(as, (cc&4) ? PPCI_CRAND : PPCI_CROR,
(CC_EQ&3), (CC_EQ&3), 4+(CC_EQ&3));
} else {
asm_guardcc(as, CC_EQ);
emit_tab(as, PPCI_CROR, (CC_EQ&3), (CC_EQ&3), ((cc^~(cc>>2))&1));
emit_tab(as, (cc&4) ? PPCI_CRAND : PPCI_CRANDC,
(CC_EQ&3), (CC_EQ&3), 4+(cc&3));
}
/* Loword comparison sets cr1 and is unsigned, except for equality. */
asm_intcomp_(as, (ir-1)->op1, (ir-1)->op2, 4,
cc | ((cc&3) == (CC_EQ&3) ? 0 : CC_UNSIGNED));
/* Hiword comparison sets cr0. */
asm_intcomp_(as, ir->op1, ir->op2, 0, cc);
as->flagmcp = NULL; /* Doesn't work here. */
}
#endif
/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
static void asm_hiop(ASMState *as, IRIns *ir)
{
#if LJ_HASFFI
/* HIOP is marked as a store because it needs its own DCE logic. */
int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
as->curins--; /* Always skip the CONV. */
if (usehi || uselo)
asm_conv64(as, ir);
return;
} else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
as->curins--; /* Always skip the loword comparison. */
asm_comp64(as, ir);
return;
} else if ((ir-1)->o == IR_XSTORE) {
as->curins--; /* Handle both stores here. */
if ((ir-1)->r != RID_SINK) {
asm_xstore(as, ir, 0);
asm_xstore(as, ir-1, 4);
}
return;
}
if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
switch ((ir-1)->o) {
case IR_ADD: as->curins--; asm_add64(as, ir); break;
case IR_SUB: as->curins--; asm_sub64(as, ir); break;
case IR_NEG: as->curins--; asm_neg64(as, ir); break;
case IR_CALLN:
case IR_CALLXS:
if (!uselo)
ra_allocref(as, ir->op1, RID2RSET(RID_RETLO)); /* Mark lo op as used. */
break;
case IR_CNEWI:
/* Nothing to do here. Handled by lo op itself. */
break;
default: lua_assert(0); break;
}
#else
UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused without FFI. */
#endif
}
/* -- Stack handling ------------------------------------------------------ */
/* Check Lua stack size for overflow. Use exit handler as fallback. */
static void asm_stack_check(ASMState *as, BCReg topslot,
IRIns *irp, RegSet allow, ExitNo exitno)
{
/* Try to get an unused temp. register, otherwise spill/restore RID_RET*. */
Reg tmp, pbase = irp ? (ra_hasreg(irp->r) ? irp->r : RID_TMP) : RID_BASE;
rset_clear(allow, pbase);
tmp = allow ? rset_pickbot(allow) :
(pbase == RID_RETHI ? RID_RETLO : RID_RETHI);
emit_condbranch(as, PPCI_BC, CC_LT, asm_exitstub_addr(as, exitno));
if (allow == RSET_EMPTY) /* Restore temp. register. */
emit_tai(as, PPCI_LWZ, tmp, RID_SP, SPOFS_TMPW);
else
ra_modified(as, tmp);
emit_ai(as, PPCI_CMPLWI, RID_TMP, (int32_t)(8*topslot));
emit_tab(as, PPCI_SUBF, RID_TMP, pbase, tmp);
emit_tai(as, PPCI_LWZ, tmp, tmp, offsetof(lua_State, maxstack));
if (pbase == RID_TMP)
emit_getgl(as, RID_TMP, jit_base);
emit_getgl(as, tmp, jit_L);
if (allow == RSET_EMPTY) /* Spill temp. register. */
emit_tai(as, PPCI_STW, tmp, RID_SP, SPOFS_TMPW);
}
/* Restore Lua stack from on-trace state. */
static void asm_stack_restore(ASMState *as, SnapShot *snap)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1];
MSize n, nent = snap->nent;
/* Store the value of all modified slots to the Lua stack. */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
BCReg s = snap_slot(sn);
int32_t ofs = 8*((int32_t)s-1);
IRRef ref = snap_ref(sn);
IRIns *ir = IR(ref);
if ((sn & SNAP_NORESTORE))
continue;
if (irt_isnum(ir->t)) {
Reg src = ra_alloc1(as, ref, RSET_FPR);
emit_fai(as, PPCI_STFD, src, RID_BASE, ofs);
} else {
Reg type;
RegSet allow = rset_exclude(RSET_GPR, RID_BASE);
lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t));
if (!irt_ispri(ir->t)) {
Reg src = ra_alloc1(as, ref, allow);
rset_clear(allow, src);
emit_tai(as, PPCI_STW, src, RID_BASE, ofs+4);
}
if ((sn & (SNAP_CONT|SNAP_FRAME))) {
if (s == 0) continue; /* Do not overwrite link to previous frame. */
type = ra_allock(as, (int32_t)(*flinks--), allow);
} else {
type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow);
}
emit_tai(as, PPCI_STW, type, RID_BASE, ofs);
}
checkmclim(as);
}
lua_assert(map + nent == flinks);
}
/* -- GC handling --------------------------------------------------------- */
/* Check GC threshold and do one or more GC steps. */
static void asm_gc_check(ASMState *as)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
IRRef args[2];
MCLabel l_end;
Reg tmp;
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
/* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
emit_ai(as, PPCI_CMPWI, RID_RET, 0);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ASMREF_TMP2; /* MSize steps */
asm_gencall(as, ci, args);
emit_tai(as, PPCI_ADDI, ra_releasetmp(as, ASMREF_TMP1), RID_JGL, -32768);
tmp = ra_releasetmp(as, ASMREF_TMP2);
emit_loadi(as, tmp, as->gcsteps);
/* Jump around GC step if GC total < GC threshold. */
emit_condbranch(as, PPCI_BC|PPCF_Y, CC_LT, l_end);
emit_ab(as, PPCI_CMPLW, RID_TMP, tmp);
emit_getgl(as, tmp, gc.threshold);
emit_getgl(as, RID_TMP, gc.total);
as->gcsteps = 0;
checkmclim(as);
}
/* -- Loop handling ------------------------------------------------------- */
/* Fixup the loop branch. */
static void asm_loop_fixup(ASMState *as)
{
MCode *p = as->mctop;
MCode *target = as->mcp;
if (as->loopinv) { /* Inverted loop branch? */
/* asm_guardcc already inverted the cond branch and patched the final b. */
p[-2] = (p[-2] & (0xffff0000u & ~PPCF_Y)) | (((target-p+2) & 0x3fffu) << 2);
} else {
p[-1] = PPCI_B|(((target-p+1)&0x00ffffffu)<<2);
}
}
/* -- Head of trace ------------------------------------------------------- */
/* Coalesce BASE register for a root trace. */
static void asm_head_root_base(ASMState *as)
{
IRIns *ir = IR(REF_BASE);
Reg r = ir->r;
if (ra_hasreg(r)) {
ra_free(as, r);
if (rset_test(as->modset, r) || irt_ismarked(ir->t))
ir->r = RID_INIT; /* No inheritance for modified BASE register. */
if (r != RID_BASE)
emit_mr(as, r, RID_BASE);
}
}
/* Coalesce BASE register for a side trace. */
static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
{
IRIns *ir = IR(REF_BASE);
Reg r = ir->r;
if (ra_hasreg(r)) {
ra_free(as, r);
if (rset_test(as->modset, r) || irt_ismarked(ir->t))
ir->r = RID_INIT; /* No inheritance for modified BASE register. */
if (irp->r == r) {
rset_clear(allow, r); /* Mark same BASE register as coalesced. */
} else if (ra_hasreg(irp->r) && rset_test(as->freeset, irp->r)) {
rset_clear(allow, irp->r);
emit_mr(as, r, irp->r); /* Move from coalesced parent reg. */
} else {
emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
}
}
return allow;
}
/* -- Tail of trace ------------------------------------------------------- */
/* Fixup the tail code. */
static void asm_tail_fixup(ASMState *as, TraceNo lnk)
{
MCode *p = as->mctop;
MCode *target;
int32_t spadj = as->T->spadjust;
if (spadj == 0) {
*--p = PPCI_NOP;
*--p = PPCI_NOP;
as->mctop = p;
} else {
/* Patch stack adjustment. */
lua_assert(checki16(CFRAME_SIZE+spadj));
p[-3] = PPCI_ADDI | PPCF_T(RID_TMP) | PPCF_A(RID_SP) | (CFRAME_SIZE+spadj);
p[-2] = PPCI_STWU | PPCF_T(RID_TMP) | PPCF_A(RID_SP) | spadj;
}
/* Patch exit branch. */
target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp;
p[-1] = PPCI_B|(((target-p+1)&0x00ffffffu)<<2);
}
/* Prepare tail of code. */
static void asm_tail_prep(ASMState *as)
{
MCode *p = as->mctop - 1; /* Leave room for exit branch. */
if (as->loopref) {
as->invmcp = as->mcp = p;
} else {
as->mcp = p-2; /* Leave room for stack pointer adjustment. */
as->invmcp = NULL;
}
}
/* -- Instruction dispatch ------------------------------------------------ */
/* Assemble a single instruction. */
static void asm_ir(ASMState *as, IRIns *ir)
{
switch ((IROp)ir->o) {
/* Miscellaneous ops. */
case IR_LOOP: asm_loop(as); break;
case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
case IR_USE:
ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
case IR_PHI: asm_phi(as, ir); break;
case IR_HIOP: asm_hiop(as, ir); break;
case IR_GCSTEP: asm_gcstep(as, ir); break;
/* Guarded assertions. */
case IR_EQ: case IR_NE:
if ((ir-1)->o == IR_HREF && ir->op1 == as->curins-1) {
as->curins--;
asm_href(as, ir-1, (IROp)ir->o);
break;
}
/* fallthrough */
case IR_LT: case IR_GE: case IR_LE: case IR_GT:
case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
case IR_ABC:
asm_comp(as, ir);
break;
case IR_RETF: asm_retf(as, ir); break;
/* Bit ops. */
case IR_BNOT: asm_bitnot(as, ir); break;
case IR_BSWAP: asm_bitswap(as, ir); break;
case IR_BAND: asm_bitand(as, ir); break;
case IR_BOR: asm_bitop(as, ir, PPCI_OR, PPCI_ORI); break;
case IR_BXOR: asm_bitop(as, ir, PPCI_XOR, PPCI_XORI); break;
case IR_BSHL: asm_bitshift(as, ir, PPCI_SLW, 0); break;
case IR_BSHR: asm_bitshift(as, ir, PPCI_SRW, 1); break;
case IR_BSAR: asm_bitshift(as, ir, PPCI_SRAW, PPCI_SRAWI); break;
case IR_BROL: asm_bitshift(as, ir, PPCI_RLWNM|PPCF_MB(0)|PPCF_ME(31),
PPCI_RLWINM|PPCF_MB(0)|PPCF_ME(31)); break;
case IR_BROR: lua_assert(0); break;
/* Arithmetic ops. */
case IR_ADD: asm_add(as, ir); break;
case IR_SUB: asm_sub(as, ir); break;
case IR_MUL: asm_mul(as, ir); break;
case IR_DIV: asm_fparith(as, ir, PPCI_FDIV); break;
case IR_MOD: asm_callid(as, ir, IRCALL_lj_vm_modi); break;
case IR_POW: asm_callid(as, ir, IRCALL_lj_vm_powi); break;
case IR_NEG: asm_neg(as, ir); break;
case IR_ABS: asm_fpunary(as, ir, PPCI_FABS); break;
case IR_ATAN2: asm_callid(as, ir, IRCALL_atan2); break;
case IR_LDEXP: asm_callid(as, ir, IRCALL_ldexp); break;
case IR_MIN: asm_min_max(as, ir, 0); break;
case IR_MAX: asm_min_max(as, ir, 1); break;
case IR_FPMATH:
if (ir->op2 == IRFPM_EXP2 && asm_fpjoin_pow(as, ir))
break;
if (ir->op2 == IRFPM_SQRT && (as->flags & JIT_F_SQRT))
asm_fpunary(as, ir, PPCI_FSQRT);
else
asm_callid(as, ir, IRCALL_lj_vm_floor + ir->op2);
break;
/* Overflow-checking arithmetic ops. */
case IR_ADDOV: asm_arithov(as, ir, PPCI_ADDO); break;
case IR_SUBOV: asm_arithov(as, ir, PPCI_SUBFO); break;
case IR_MULOV: asm_arithov(as, ir, PPCI_MULLWO); break;
/* Memory references. */
case IR_AREF: asm_aref(as, ir); break;
case IR_HREF: asm_href(as, ir, 0); break;
case IR_HREFK: asm_hrefk(as, ir); break;
case IR_NEWREF: asm_newref(as, ir); break;
case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
case IR_FREF: asm_fref(as, ir); break;
case IR_STRREF: asm_strref(as, ir); break;
/* Loads and stores. */
case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
asm_ahuvload(as, ir);
break;
case IR_FLOAD: asm_fload(as, ir); break;
case IR_XLOAD: asm_xload(as, ir); break;
case IR_SLOAD: asm_sload(as, ir); break;
case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
case IR_FSTORE: asm_fstore(as, ir); break;
case IR_XSTORE: asm_xstore(as, ir, 0); break;
/* Allocations. */
case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
case IR_TNEW: asm_tnew(as, ir); break;
case IR_TDUP: asm_tdup(as, ir); break;
case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
/* Write barriers. */
case IR_TBAR: asm_tbar(as, ir); break;
case IR_OBAR: asm_obar(as, ir); break;
/* Type conversions. */
case IR_CONV: asm_conv(as, ir); break;
case IR_TOBIT: asm_tobit(as, ir); break;
case IR_TOSTR: asm_tostr(as, ir); break;
case IR_STRTO: asm_strto(as, ir); break;
/* Calls. */
case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
case IR_CALLXS: asm_callx(as, ir); break;
case IR_CARG: break;
default:
setintV(&as->J->errinfo, ir->o);
lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
break;
}
}
/* -- Trace setup --------------------------------------------------------- */
/* Ensure there are enough stack slots for call arguments. */
static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
IRRef args[CCI_NARGS_MAX*2];
uint32_t i, nargs = (int)CCI_NARGS(ci);
int nslots = 2, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR;
asm_collectargs(as, ir, ci, args);
for (i = 0; i < nargs; i++)
if (args[i] && irt_isfp(IR(args[i])->t)) {
if (nfpr > 0) nfpr--; else nslots = (nslots+3) & ~1;
} else {
if (ngpr > 0) ngpr--; else nslots++;
}
if (nslots > as->evenspill) /* Leave room for args in stack slots. */
as->evenspill = nslots;
return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
}
static void asm_setup_target(ASMState *as)
{
asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0));
}
/* -- Trace patching ------------------------------------------------------ */
/* Patch exit jumps of existing machine code to a new target. */
void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
{
MCode *p = T->mcode;
MCode *pe = (MCode *)((char *)p + T->szmcode);
MCode *px = exitstub_trace_addr(T, exitno);
MCode *cstart = NULL;
MCode *mcarea = lj_mcode_patch(J, p, 0);
int clearso = 0;
for (; p < pe; p++) {
/* Look for exitstub branch, try to replace with branch to target. */
uint32_t ins = *p;
if ((ins & 0xfc000000u) == 0x40000000u &&
((ins ^ ((char *)px-(char *)p)) & 0xffffu) == 0) {
ptrdiff_t delta = (char *)target - (char *)p;
if (((ins >> 16) & 3) == (CC_SO&3)) {
clearso = sizeof(MCode);
delta -= sizeof(MCode);
}
/* Many, but not all short-range branches can be patched directly. */
if (((delta + 0x8000) >> 16) == 0) {
*p = (ins & 0xffdf0000u) | ((uint32_t)delta & 0xffffu) |
((delta & 0x8000) * (PPCF_Y/0x8000));
if (!cstart) cstart = p;
}
} else if ((ins & 0xfc000000u) == PPCI_B &&
((ins ^ ((char *)px-(char *)p)) & 0x03ffffffu) == 0) {
ptrdiff_t delta = (char *)target - (char *)p;
lua_assert(((delta + 0x02000000) >> 26) == 0);
*p = PPCI_B | ((uint32_t)delta & 0x03ffffffu);
if (!cstart) cstart = p;
}
}
{ /* Always patch long-range branch in exit stub itself. */
ptrdiff_t delta = (char *)target - (char *)px - clearso;
lua_assert(((delta + 0x02000000) >> 26) == 0);
*px = PPCI_B | ((uint32_t)delta & 0x03ffffffu);
}
if (!cstart) cstart = px;
lj_mcode_sync(cstart, px+1);
if (clearso) { /* Extend the current trace. Ugly workaround. */
MCode *pp = J->cur.mcode;
J->cur.szmcode += sizeof(MCode);
*--pp = PPCI_MCRXR; /* Clear SO flag. */
J->cur.mcode = pp;
lj_mcode_sync(pp, pp+1);
}
lj_mcode_patch(J, mcarea, 1);
}