1
0
Fork 0
Aegisub/vendor/luajit/src/lj_asm_arm64.h

2023 lines
64 KiB
C

/*
** ARM64 IR assembler (SSA IR -> machine code).
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
**
** Contributed by Djordje Kovacevic and Stefan Pejic from RT-RK.com.
** Sponsored by Cisco Systems, Inc.
*/
/* -- Register allocator extensions --------------------------------------- */
/* Allocate a register with a hint. */
static Reg ra_hintalloc(ASMState *as, IRRef ref, Reg hint, RegSet allow)
{
Reg r = IR(ref)->r;
if (ra_noreg(r)) {
if (!ra_hashint(r) && !iscrossref(as, ref))
ra_sethint(IR(ref)->r, hint); /* Propagate register hint. */
r = ra_allocref(as, ref, allow);
}
ra_noweak(as, r);
return r;
}
/* Allocate two source registers for three-operand instructions. */
static Reg ra_alloc2(ASMState *as, IRIns *ir, RegSet allow)
{
IRIns *irl = IR(ir->op1), *irr = IR(ir->op2);
Reg left = irl->r, right = irr->r;
if (ra_hasreg(left)) {
ra_noweak(as, left);
if (ra_noreg(right))
right = ra_allocref(as, ir->op2, rset_exclude(allow, left));
else
ra_noweak(as, right);
} else if (ra_hasreg(right)) {
ra_noweak(as, right);
left = ra_allocref(as, ir->op1, rset_exclude(allow, right));
} else if (ra_hashint(right)) {
right = ra_allocref(as, ir->op2, allow);
left = ra_alloc1(as, ir->op1, rset_exclude(allow, right));
} else {
left = ra_allocref(as, ir->op1, allow);
right = ra_alloc1(as, ir->op2, rset_exclude(allow, left));
}
return left | (right << 8);
}
/* -- Guard handling ------------------------------------------------------ */
/* Setup all needed exit stubs. */
static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
{
ExitNo i;
MCode *mxp = as->mctop;
if (mxp - (nexits + 3 + MCLIM_REDZONE) < as->mclim)
asm_mclimit(as);
/* 1: str lr,[sp]; bl ->vm_exit_handler; movz w0,traceno; bl <1; bl <1; ... */
for (i = nexits-1; (int32_t)i >= 0; i--)
*--mxp = A64I_LE(A64I_BL|((-3-i)&0x03ffffffu));
*--mxp = A64I_LE(A64I_MOVZw|A64F_U16(as->T->traceno));
mxp--;
*mxp = A64I_LE(A64I_BL|(((MCode *)(void *)lj_vm_exit_handler-mxp)&0x03ffffffu));
*--mxp = A64I_LE(A64I_STRx|A64F_D(RID_LR)|A64F_N(RID_SP));
as->mctop = mxp;
}
static MCode *asm_exitstub_addr(ASMState *as, ExitNo exitno)
{
/* Keep this in-sync with exitstub_trace_addr(). */
return as->mctop + exitno + 3;
}
/* Emit conditional branch to exit for guard. */
static void asm_guardcc(ASMState *as, A64CC cc)
{
MCode *target = asm_exitstub_addr(as, as->snapno);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->loopinv = 1;
*p = A64I_B | ((target-p) & 0x03ffffffu);
emit_cond_branch(as, cc^1, p-1);
return;
}
emit_cond_branch(as, cc, target);
}
/* Emit test and branch instruction to exit for guard. */
static void asm_guardtnb(ASMState *as, A64Ins ai, Reg r, uint32_t bit)
{
MCode *target = asm_exitstub_addr(as, as->snapno);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->loopinv = 1;
*p = A64I_B | ((target-p) & 0x03ffffffu);
emit_tnb(as, ai^0x01000000u, r, bit, p-1);
return;
}
emit_tnb(as, ai, r, bit, target);
}
/* Emit compare and branch instruction to exit for guard. */
static void asm_guardcnb(ASMState *as, A64Ins ai, Reg r)
{
MCode *target = asm_exitstub_addr(as, as->snapno);
MCode *p = as->mcp;
if (LJ_UNLIKELY(p == as->invmcp)) {
as->loopinv = 1;
*p = A64I_B | ((target-p) & 0x03ffffffu);
emit_cnb(as, ai^0x01000000u, r, p-1);
return;
}
emit_cnb(as, ai, r, target);
}
/* -- Operand fusion ------------------------------------------------------ */
/* Limit linear search to this distance. Avoids O(n^2) behavior. */
#define CONFLICT_SEARCH_LIM 31
static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
{
if (irref_isk(ref)) {
IRIns *ir = IR(ref);
if (ir->o == IR_KNULL || !irt_is64(ir->t)) {
*k = ir->i;
return 1;
} else if (checki32((int64_t)ir_k64(ir)->u64)) {
*k = (int32_t)ir_k64(ir)->u64;
return 1;
}
}
return 0;
}
/* Check if there's no conflicting instruction between curins and ref. */
static int noconflict(ASMState *as, IRRef ref, IROp conflict)
{
IRIns *ir = as->ir;
IRRef i = as->curins;
if (i > ref + CONFLICT_SEARCH_LIM)
return 0; /* Give up, ref is too far away. */
while (--i > ref)
if (ir[i].o == conflict)
return 0; /* Conflict found. */
return 1; /* Ok, no conflict. */
}
/* Fuse the array base of colocated arrays. */
static int32_t asm_fuseabase(ASMState *as, IRRef ref)
{
IRIns *ir = IR(ref);
if (ir->o == IR_TNEW && ir->op1 <= LJ_MAX_COLOSIZE &&
!neverfuse(as) && noconflict(as, ref, IR_NEWREF))
return (int32_t)sizeof(GCtab);
return 0;
}
#define FUSE_REG 0x40000000
/* Fuse array/hash/upvalue reference into register+offset operand. */
static Reg asm_fuseahuref(ASMState *as, IRRef ref, int32_t *ofsp, RegSet allow,
A64Ins ins)
{
IRIns *ir = IR(ref);
if (ra_noreg(ir->r)) {
if (ir->o == IR_AREF) {
if (mayfuse(as, ref)) {
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
ofs += 8*IR(ir->op2)->i;
if (emit_checkofs(ins, ofs)) {
*ofsp = ofs;
return ra_alloc1(as, refa, allow);
}
} else {
Reg base = ra_alloc1(as, ir->op1, allow);
*ofsp = FUSE_REG|ra_alloc1(as, ir->op2, rset_exclude(allow, base));
return base;
}
}
} else if (ir->o == IR_HREFK) {
if (mayfuse(as, ref)) {
int32_t ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
if (emit_checkofs(ins, ofs)) {
*ofsp = ofs;
return ra_alloc1(as, ir->op1, allow);
}
}
} else if (ir->o == IR_UREFC) {
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
int64_t ofs = glofs(as, &uv->tv);
if (emit_checkofs(ins, ofs)) {
*ofsp = (int32_t)ofs;
return RID_GL;
}
}
}
}
*ofsp = 0;
return ra_alloc1(as, ref, allow);
}
/* Fuse m operand into arithmetic/logic instructions. */
static uint32_t asm_fuseopm(ASMState *as, A64Ins ai, IRRef ref, RegSet allow)
{
IRIns *ir = IR(ref);
if (ra_hasreg(ir->r)) {
ra_noweak(as, ir->r);
return A64F_M(ir->r);
} else if (irref_isk(ref)) {
uint32_t m;
int64_t k = get_k64val(ir);
if ((ai & 0x1f000000) == 0x0a000000)
m = emit_isk13(k, irt_is64(ir->t));
else
m = emit_isk12(k);
if (m)
return m;
} else if (mayfuse(as, ref)) {
if ((ir->o >= IR_BSHL && ir->o <= IR_BSAR && irref_isk(ir->op2)) ||
(ir->o == IR_ADD && ir->op1 == ir->op2)) {
A64Shift sh = ir->o == IR_BSHR ? A64SH_LSR :
ir->o == IR_BSAR ? A64SH_ASR : A64SH_LSL;
int shift = ir->o == IR_ADD ? 1 :
(IR(ir->op2)->i & (irt_is64(ir->t) ? 63 : 31));
IRIns *irl = IR(ir->op1);
if (sh == A64SH_LSL &&
irl->o == IR_CONV &&
irl->op2 == ((IRT_I64<<IRCONV_DSH)|IRT_INT|IRCONV_SEXT) &&
shift <= 4 &&
canfuse(as, irl)) {
Reg m = ra_alloc1(as, irl->op1, allow);
return A64F_M(m) | A64F_EXSH(A64EX_SXTW, shift);
} else {
Reg m = ra_alloc1(as, ir->op1, allow);
return A64F_M(m) | A64F_SH(sh, shift);
}
} else if (ir->o == IR_CONV &&
ir->op2 == ((IRT_I64<<IRCONV_DSH)|IRT_INT|IRCONV_SEXT)) {
Reg m = ra_alloc1(as, ir->op1, allow);
return A64F_M(m) | A64F_EX(A64EX_SXTW);
}
}
return A64F_M(ra_allocref(as, ref, allow));
}
/* Fuse XLOAD/XSTORE reference into load/store operand. */
static void asm_fusexref(ASMState *as, A64Ins ai, Reg rd, IRRef ref,
RegSet allow)
{
IRIns *ir = IR(ref);
Reg base;
int32_t ofs = 0;
if (ra_noreg(ir->r) && canfuse(as, ir)) {
if (ir->o == IR_ADD) {
if (asm_isk32(as, ir->op2, &ofs) && emit_checkofs(ai, ofs)) {
ref = ir->op1;
} else {
Reg rn, rm;
IRRef lref = ir->op1, rref = ir->op2;
IRIns *irl = IR(lref);
if (mayfuse(as, irl->op1)) {
unsigned int shift = 4;
if (irl->o == IR_BSHL && irref_isk(irl->op2)) {
shift = (IR(irl->op2)->i & 63);
} else if (irl->o == IR_ADD && irl->op1 == irl->op2) {
shift = 1;
}
if ((ai >> 30) == shift) {
lref = irl->op1;
irl = IR(lref);
ai |= A64I_LS_SH;
}
}
if (irl->o == IR_CONV &&
irl->op2 == ((IRT_I64<<IRCONV_DSH)|IRT_INT|IRCONV_SEXT) &&
canfuse(as, irl)) {
lref = irl->op1;
ai |= A64I_LS_SXTWx;
} else {
ai |= A64I_LS_LSLx;
}
rm = ra_alloc1(as, lref, allow);
rn = ra_alloc1(as, rref, rset_exclude(allow, rm));
emit_dnm(as, (ai^A64I_LS_R), (rd & 31), rn, rm);
return;
}
} else if (ir->o == IR_STRREF) {
if (asm_isk32(as, ir->op2, &ofs)) {
ref = ir->op1;
} else if (asm_isk32(as, ir->op1, &ofs)) {
ref = ir->op2;
} else {
Reg rn = ra_alloc1(as, ir->op1, allow);
IRIns *irr = IR(ir->op2);
uint32_t m;
if (irr+1 == ir && !ra_used(irr) &&
irr->o == IR_ADD && irref_isk(irr->op2)) {
ofs = sizeof(GCstr) + IR(irr->op2)->i;
if (emit_checkofs(ai, ofs)) {
Reg rm = ra_alloc1(as, irr->op1, rset_exclude(allow, rn));
m = A64F_M(rm) | A64F_EX(A64EX_SXTW);
goto skipopm;
}
}
m = asm_fuseopm(as, 0, ir->op2, rset_exclude(allow, rn));
ofs = sizeof(GCstr);
skipopm:
emit_lso(as, ai, rd, rd, ofs);
emit_dn(as, A64I_ADDx^m, rd, rn);
return;
}
ofs += sizeof(GCstr);
if (!emit_checkofs(ai, ofs)) {
Reg rn = ra_alloc1(as, ref, allow);
Reg rm = ra_allock(as, ofs, rset_exclude(allow, rn));
emit_dnm(as, (ai^A64I_LS_R)|A64I_LS_UXTWx, rd, rn, rm);
return;
}
}
}
base = ra_alloc1(as, ref, allow);
emit_lso(as, ai, (rd & 31), base, ofs);
}
/* Fuse FP multiply-add/sub. */
static int asm_fusemadd(ASMState *as, IRIns *ir, A64Ins ai, A64Ins air)
{
IRRef lref = ir->op1, rref = ir->op2;
IRIns *irm;
if (lref != rref &&
((mayfuse(as, lref) && (irm = IR(lref), irm->o == IR_MUL) &&
ra_noreg(irm->r)) ||
(mayfuse(as, rref) && (irm = IR(rref), irm->o == IR_MUL) &&
(rref = lref, ai = air, ra_noreg(irm->r))))) {
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg add = ra_hintalloc(as, rref, dest, RSET_FPR);
Reg left = ra_alloc2(as, irm,
rset_exclude(rset_exclude(RSET_FPR, dest), add));
Reg right = (left >> 8); left &= 255;
emit_dnma(as, ai, (dest & 31), (left & 31), (right & 31), (add & 31));
return 1;
}
return 0;
}
/* Fuse BAND + BSHL/BSHR into UBFM. */
static int asm_fuseandshift(ASMState *as, IRIns *ir)
{
IRIns *irl = IR(ir->op1);
lua_assert(ir->o == IR_BAND);
if (canfuse(as, irl) && irref_isk(ir->op2)) {
uint64_t mask = get_k64val(IR(ir->op2));
if (irref_isk(irl->op2) && (irl->o == IR_BSHR || irl->o == IR_BSHL)) {
int32_t shmask = irt_is64(irl->t) ? 63 : 31;
int32_t shift = (IR(irl->op2)->i & shmask);
int32_t imms = shift;
if (irl->o == IR_BSHL) {
mask >>= shift;
shift = (shmask-shift+1) & shmask;
imms = 0;
}
if (mask && !((mask+1) & mask)) { /* Contiguous 1-bits at the bottom. */
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, irl->op1, RSET_GPR);
A64Ins ai = shmask == 63 ? A64I_UBFMx : A64I_UBFMw;
imms += 63 - emit_clz64(mask);
if (imms > shmask) imms = shmask;
emit_dn(as, ai | A64F_IMMS(imms) | A64F_IMMR(shift), dest, left);
return 1;
}
}
}
return 0;
}
/* Fuse BOR(BSHL, BSHR) into EXTR/ROR. */
static int asm_fuseorshift(ASMState *as, IRIns *ir)
{
IRIns *irl = IR(ir->op1), *irr = IR(ir->op2);
lua_assert(ir->o == IR_BOR);
if (canfuse(as, irl) && canfuse(as, irr) &&
((irl->o == IR_BSHR && irr->o == IR_BSHL) ||
(irl->o == IR_BSHL && irr->o == IR_BSHR))) {
if (irref_isk(irl->op2) && irref_isk(irr->op2)) {
IRRef lref = irl->op1, rref = irr->op1;
uint32_t lshift = IR(irl->op2)->i, rshift = IR(irr->op2)->i;
if (irl->o == IR_BSHR) { /* BSHR needs to be the right operand. */
uint32_t tmp2;
IRRef tmp1 = lref; lref = rref; rref = tmp1;
tmp2 = lshift; lshift = rshift; rshift = tmp2;
}
if (rshift + lshift == (irt_is64(ir->t) ? 64 : 32)) {
A64Ins ai = irt_is64(ir->t) ? A64I_EXTRx : A64I_EXTRw;
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, lref, RSET_GPR);
Reg right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, left));
emit_dnm(as, ai | A64F_IMMS(rshift), dest, left, right);
return 1;
}
}
}
return 0;
}
/* -- Calls --------------------------------------------------------------- */
/* Generate a call to a C function. */
static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
{
uint32_t n, nargs = CCI_XNARGS(ci);
int32_t ofs = 0;
Reg gpr, fpr = REGARG_FIRSTFPR;
if ((void *)ci->func)
emit_call(as, (void *)ci->func);
for (gpr = REGARG_FIRSTGPR; gpr <= REGARG_LASTGPR; gpr++)
as->cost[gpr] = REGCOST(~0u, ASMREF_L);
gpr = REGARG_FIRSTGPR;
for (n = 0; n < nargs; n++) { /* Setup args. */
IRRef ref = args[n];
IRIns *ir = IR(ref);
if (ref) {
if (irt_isfp(ir->t)) {
if (fpr <= REGARG_LASTFPR) {
lua_assert(rset_test(as->freeset, fpr)); /* Must have been evicted. */
ra_leftov(as, fpr, ref);
fpr++;
} else {
Reg r = ra_alloc1(as, ref, RSET_FPR);
emit_spstore(as, ir, r, ofs + ((LJ_BE && !irt_isnum(ir->t)) ? 4 : 0));
ofs += 8;
}
} else {
if (gpr <= REGARG_LASTGPR) {
lua_assert(rset_test(as->freeset, gpr)); /* Must have been evicted. */
ra_leftov(as, gpr, ref);
gpr++;
} else {
Reg r = ra_alloc1(as, ref, RSET_GPR);
emit_spstore(as, ir, r, ofs + ((LJ_BE && !irt_is64(ir->t)) ? 4 : 0));
ofs += 8;
}
}
}
}
}
/* Setup result reg/sp for call. Evict scratch regs. */
static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
RegSet drop = RSET_SCRATCH;
if (ra_hasreg(ir->r))
rset_clear(drop, ir->r); /* Dest reg handled below. */
ra_evictset(as, drop); /* Evictions must be performed first. */
if (ra_used(ir)) {
lua_assert(!irt_ispri(ir->t));
if (irt_isfp(ir->t)) {
if (ci->flags & CCI_CASTU64) {
Reg dest = ra_dest(as, ir, RSET_FPR) & 31;
emit_dn(as, irt_isnum(ir->t) ? A64I_FMOV_D_R : A64I_FMOV_S_R,
dest, RID_RET);
} else {
ra_destreg(as, ir, RID_FPRET);
}
} else {
ra_destreg(as, ir, RID_RET);
}
}
UNUSED(ci);
}
static void asm_callx(ASMState *as, IRIns *ir)
{
IRRef args[CCI_NARGS_MAX*2];
CCallInfo ci;
IRRef func;
IRIns *irf;
ci.flags = asm_callx_flags(as, ir);
asm_collectargs(as, ir, &ci, args);
asm_setupresult(as, ir, &ci);
func = ir->op2; irf = IR(func);
if (irf->o == IR_CARG) { func = irf->op1; irf = IR(func); }
if (irref_isk(func)) { /* Call to constant address. */
ci.func = (ASMFunction)(ir_k64(irf)->u64);
} else { /* Need a non-argument register for indirect calls. */
Reg freg = ra_alloc1(as, func, RSET_RANGE(RID_X8, RID_MAX_GPR)-RSET_FIXED);
emit_n(as, A64I_BLR, freg);
ci.func = (ASMFunction)(void *)0;
}
asm_gencall(as, &ci, args);
}
/* -- Returns ------------------------------------------------------------- */
/* Return to lower frame. Guard that it goes to the right spot. */
static void asm_retf(ASMState *as, IRIns *ir)
{
Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
void *pc = ir_kptr(IR(ir->op2));
int32_t delta = 1+LJ_FR2+bc_a(*((const BCIns *)pc - 1));
as->topslot -= (BCReg)delta;
if ((int32_t)as->topslot < 0) as->topslot = 0;
irt_setmark(IR(REF_BASE)->t); /* Children must not coalesce with BASE reg. */
/* Need to force a spill on REF_BASE now to update the stack slot. */
emit_lso(as, A64I_STRx, base, RID_SP, ra_spill(as, IR(REF_BASE)));
emit_setgl(as, base, jit_base);
emit_addptr(as, base, -8*delta);
asm_guardcc(as, CC_NE);
emit_nm(as, A64I_CMPx, RID_TMP,
ra_allock(as, i64ptr(pc), rset_exclude(RSET_GPR, base)));
emit_lso(as, A64I_LDRx, RID_TMP, base, -8);
}
/* -- Type conversions ---------------------------------------------------- */
static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
{
Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
Reg dest = ra_dest(as, ir, RSET_GPR);
asm_guardcc(as, CC_NE);
emit_nm(as, A64I_FCMPd, (tmp & 31), (left & 31));
emit_dn(as, A64I_FCVT_F64_S32, (tmp & 31), dest);
emit_dn(as, A64I_FCVT_S32_F64, dest, (left & 31));
}
static void asm_tobit(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_FPR;
Reg left = ra_alloc1(as, ir->op1, allow);
Reg right = ra_alloc1(as, ir->op2, rset_clear(allow, left));
Reg tmp = ra_scratch(as, rset_clear(allow, right));
Reg dest = ra_dest(as, ir, RSET_GPR);
emit_dn(as, A64I_FMOV_R_S, dest, (tmp & 31));
emit_dnm(as, A64I_FADDd, (tmp & 31), (left & 31), (right & 31));
}
static void asm_conv(ASMState *as, IRIns *ir)
{
IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
int st64 = (st == IRT_I64 || st == IRT_U64 || st == IRT_P64);
int stfp = (st == IRT_NUM || st == IRT_FLOAT);
IRRef lref = ir->op1;
lua_assert(irt_type(ir->t) != st);
if (irt_isfp(ir->t)) {
Reg dest = ra_dest(as, ir, RSET_FPR);
if (stfp) { /* FP to FP conversion. */
emit_dn(as, st == IRT_NUM ? A64I_FCVT_F32_F64 : A64I_FCVT_F64_F32,
(dest & 31), (ra_alloc1(as, lref, RSET_FPR) & 31));
} else { /* Integer to FP conversion. */
Reg left = ra_alloc1(as, lref, RSET_GPR);
A64Ins ai = irt_isfloat(ir->t) ?
(((IRT_IS64 >> st) & 1) ?
(st == IRT_I64 ? A64I_FCVT_F32_S64 : A64I_FCVT_F32_U64) :
(st == IRT_INT ? A64I_FCVT_F32_S32 : A64I_FCVT_F32_U32)) :
(((IRT_IS64 >> st) & 1) ?
(st == IRT_I64 ? A64I_FCVT_F64_S64 : A64I_FCVT_F64_U64) :
(st == IRT_INT ? A64I_FCVT_F64_S32 : A64I_FCVT_F64_U32));
emit_dn(as, ai, (dest & 31), left);
}
} else if (stfp) { /* FP to integer conversion. */
if (irt_isguard(ir->t)) {
/* Checked conversions are only supported from number to int. */
lua_assert(irt_isint(ir->t) && st == IRT_NUM);
asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
} else {
Reg left = ra_alloc1(as, lref, RSET_FPR);
Reg dest = ra_dest(as, ir, RSET_GPR);
A64Ins ai = irt_is64(ir->t) ?
(st == IRT_NUM ?
(irt_isi64(ir->t) ? A64I_FCVT_S64_F64 : A64I_FCVT_U64_F64) :
(irt_isi64(ir->t) ? A64I_FCVT_S64_F32 : A64I_FCVT_U64_F32)) :
(st == IRT_NUM ?
(irt_isint(ir->t) ? A64I_FCVT_S32_F64 : A64I_FCVT_U32_F64) :
(irt_isint(ir->t) ? A64I_FCVT_S32_F32 : A64I_FCVT_U32_F32));
emit_dn(as, ai, dest, (left & 31));
}
} else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, lref, RSET_GPR);
A64Ins ai = st == IRT_I8 ? A64I_SXTBw :
st == IRT_U8 ? A64I_UXTBw :
st == IRT_I16 ? A64I_SXTHw : A64I_UXTHw;
lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
emit_dn(as, ai, dest, left);
} else {
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irt_is64(ir->t)) {
if (st64 || !(ir->op2 & IRCONV_SEXT)) {
/* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */
} else { /* 32 to 64 bit sign extension. */
Reg left = ra_alloc1(as, lref, RSET_GPR);
emit_dn(as, A64I_SXTW, dest, left);
}
} else {
if (st64) {
/* This is either a 32 bit reg/reg mov which zeroes the hiword
** or a load of the loword from a 64 bit address.
*/
Reg left = ra_alloc1(as, lref, RSET_GPR);
emit_dm(as, A64I_MOVw, dest, left);
} else { /* 32/32 bit no-op (cast). */
ra_leftov(as, dest, lref); /* Do nothing, but may need to move regs. */
}
}
}
}
static void asm_strto(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_strscan_num];
IRRef args[2];
Reg dest = 0, tmp;
int destused = ra_used(ir);
int32_t ofs = 0;
ra_evictset(as, RSET_SCRATCH);
if (destused) {
if (ra_hasspill(ir->s)) {
ofs = sps_scale(ir->s);
destused = 0;
if (ra_hasreg(ir->r)) {
ra_free(as, ir->r);
ra_modified(as, ir->r);
emit_spload(as, ir, ir->r, ofs);
}
} else {
dest = ra_dest(as, ir, RSET_FPR);
}
}
if (destused)
emit_lso(as, A64I_LDRd, (dest & 31), RID_SP, 0);
asm_guardcnb(as, A64I_CBZ, RID_RET);
args[0] = ir->op1; /* GCstr *str */
args[1] = ASMREF_TMP1; /* TValue *n */
asm_gencall(as, ci, args);
tmp = ra_releasetmp(as, ASMREF_TMP1);
emit_opk(as, A64I_ADDx, tmp, RID_SP, ofs, RSET_GPR);
}
/* -- Memory references --------------------------------------------------- */
/* Store tagged value for ref at base+ofs. */
static void asm_tvstore64(ASMState *as, Reg base, int32_t ofs, IRRef ref)
{
RegSet allow = rset_exclude(RSET_GPR, base);
IRIns *ir = IR(ref);
lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) || irt_isinteger(ir->t));
if (irref_isk(ref)) {
TValue k;
lj_ir_kvalue(as->J->L, &k, ir);
emit_lso(as, A64I_STRx, ra_allock(as, k.u64, allow), base, ofs);
} else {
Reg src = ra_alloc1(as, ref, allow);
rset_clear(allow, src);
if (irt_isinteger(ir->t)) {
Reg type = ra_allock(as, (int64_t)irt_toitype(ir->t) << 47, allow);
emit_lso(as, A64I_STRx, RID_TMP, base, ofs);
emit_dnm(as, A64I_ADDx | A64F_EX(A64EX_UXTW), RID_TMP, type, src);
} else {
Reg type = ra_allock(as, (int32_t)irt_toitype(ir->t), allow);
emit_lso(as, A64I_STRx, RID_TMP, base, ofs);
emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 47), RID_TMP, src, type);
}
}
}
/* Get pointer to TValue. */
static void asm_tvptr(ASMState *as, Reg dest, IRRef ref)
{
IRIns *ir = IR(ref);
if (irt_isnum(ir->t)) {
if (irref_isk(ref)) {
/* Use the number constant itself as a TValue. */
ra_allockreg(as, i64ptr(ir_knum(ir)), dest);
} else {
/* Otherwise force a spill and use the spill slot. */
emit_opk(as, A64I_ADDx, dest, RID_SP, ra_spill(as, ir), RSET_GPR);
}
} else {
/* Otherwise use g->tmptv to hold the TValue. */
asm_tvstore64(as, dest, 0, ref);
ra_allockreg(as, i64ptr(&J2G(as->J)->tmptv), dest);
}
}
static void asm_aref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx, base;
if (irref_isk(ir->op2)) {
IRRef tab = IR(ir->op1)->op1;
int32_t ofs = asm_fuseabase(as, tab);
IRRef refa = ofs ? tab : ir->op1;
uint32_t k = emit_isk12(ofs + 8*IR(ir->op2)->i);
if (k) {
base = ra_alloc1(as, refa, RSET_GPR);
emit_dn(as, A64I_ADDx^k, dest, base);
return;
}
}
base = ra_alloc1(as, ir->op1, RSET_GPR);
idx = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, base));
emit_dnm(as, A64I_ADDx | A64F_EXSH(A64EX_UXTW, 3), dest, base, idx);
}
/* Inlined hash lookup. Specialized for key type and for const keys.
** The equivalent C code is:
** Node *n = hashkey(t, key);
** do {
** if (lj_obj_equal(&n->key, key)) return &n->val;
** } while ((n = nextnode(n)));
** return niltv(L);
*/
static void asm_href(ASMState *as, IRIns *ir, IROp merge)
{
RegSet allow = RSET_GPR;
int destused = ra_used(ir);
Reg dest = ra_dest(as, ir, allow);
Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
Reg key = 0, tmp = RID_TMP;
IRRef refkey = ir->op2;
IRIns *irkey = IR(refkey);
int isk = irref_isk(ir->op2);
IRType1 kt = irkey->t;
uint32_t k = 0;
uint32_t khash;
MCLabel l_end, l_loop, l_next;
rset_clear(allow, tab);
if (!isk) {
key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
rset_clear(allow, key);
if (!irt_isstr(kt)) {
tmp = ra_scratch(as, allow);
rset_clear(allow, tmp);
}
} else if (irt_isnum(kt)) {
int64_t val = (int64_t)ir_knum(irkey)->u64;
if (!(k = emit_isk12(val))) {
key = ra_allock(as, val, allow);
rset_clear(allow, key);
}
} else if (!irt_ispri(kt)) {
if (!(k = emit_isk12(irkey->i))) {
key = ra_alloc1(as, refkey, allow);
rset_clear(allow, key);
}
}
/* Key not found in chain: jump to exit (if merged) or load niltv. */
l_end = emit_label(as);
as->invmcp = NULL;
if (merge == IR_NE)
asm_guardcc(as, CC_AL);
else if (destused)
emit_loada(as, dest, niltvg(J2G(as->J)));
/* Follow hash chain until the end. */
l_loop = --as->mcp;
emit_n(as, A64I_CMPx^A64I_K12^0, dest);
emit_lso(as, A64I_LDRx, dest, dest, offsetof(Node, next));
l_next = emit_label(as);
/* Type and value comparison. */
if (merge == IR_EQ)
asm_guardcc(as, CC_EQ);
else
emit_cond_branch(as, CC_EQ, l_end);
if (irt_isnum(kt)) {
if (isk) {
/* Assumes -0.0 is already canonicalized to +0.0. */
if (k)
emit_n(as, A64I_CMPx^k, tmp);
else
emit_nm(as, A64I_CMPx, key, tmp);
emit_lso(as, A64I_LDRx, tmp, dest, offsetof(Node, key.u64));
} else {
Reg tisnum = ra_allock(as, LJ_TISNUM << 15, allow);
Reg ftmp = ra_scratch(as, rset_exclude(RSET_FPR, key));
rset_clear(allow, tisnum);
emit_nm(as, A64I_FCMPd, key, ftmp);
emit_dn(as, A64I_FMOV_D_R, (ftmp & 31), (tmp & 31));
emit_cond_branch(as, CC_LO, l_next);
emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32), tisnum, tmp);
emit_lso(as, A64I_LDRx, tmp, dest, offsetof(Node, key.n));
}
} else if (irt_isaddr(kt)) {
Reg scr;
if (isk) {
int64_t kk = ((int64_t)irt_toitype(irkey->t) << 47) | irkey[1].tv.u64;
scr = ra_allock(as, kk, allow);
emit_nm(as, A64I_CMPx, scr, tmp);
emit_lso(as, A64I_LDRx, tmp, dest, offsetof(Node, key.u64));
} else {
scr = ra_scratch(as, allow);
emit_nm(as, A64I_CMPx, tmp, scr);
emit_lso(as, A64I_LDRx, scr, dest, offsetof(Node, key.u64));
}
rset_clear(allow, scr);
} else {
Reg type, scr;
lua_assert(irt_ispri(kt) && !irt_isnil(kt));
type = ra_allock(as, ~((int64_t)~irt_toitype(ir->t) << 47), allow);
scr = ra_scratch(as, rset_clear(allow, type));
rset_clear(allow, scr);
emit_nm(as, A64I_CMPw, scr, type);
emit_lso(as, A64I_LDRx, scr, dest, offsetof(Node, key));
}
*l_loop = A64I_BCC | A64F_S19(as->mcp - l_loop) | CC_NE;
if (!isk && irt_isaddr(kt)) {
Reg type = ra_allock(as, (int32_t)irt_toitype(kt), allow);
emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 47), tmp, key, type);
rset_clear(allow, type);
}
/* Load main position relative to tab->node into dest. */
khash = isk ? ir_khash(irkey) : 1;
if (khash == 0) {
emit_lso(as, A64I_LDRx, dest, tab, offsetof(GCtab, node));
} else {
emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 3), dest, tmp, dest);
emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 1), dest, dest, dest);
emit_lso(as, A64I_LDRx, tmp, tab, offsetof(GCtab, node));
if (isk) {
Reg tmphash = ra_allock(as, khash, allow);
emit_dnm(as, A64I_ANDw, dest, dest, tmphash);
emit_lso(as, A64I_LDRw, dest, tab, offsetof(GCtab, hmask));
} else if (irt_isstr(kt)) {
/* Fetch of str->hash is cheaper than ra_allock. */
emit_dnm(as, A64I_ANDw, dest, dest, tmp);
emit_lso(as, A64I_LDRw, tmp, key, offsetof(GCstr, hash));
emit_lso(as, A64I_LDRw, dest, tab, offsetof(GCtab, hmask));
} else { /* Must match with hash*() in lj_tab.c. */
emit_dnm(as, A64I_ANDw, dest, dest, tmp);
emit_lso(as, A64I_LDRw, tmp, tab, offsetof(GCtab, hmask));
emit_dnm(as, A64I_SUBw, dest, dest, tmp);
emit_dnm(as, A64I_EXTRw | (A64F_IMMS(32-HASH_ROT3)), tmp, tmp, tmp);
emit_dnm(as, A64I_EORw, dest, dest, tmp);
emit_dnm(as, A64I_EXTRw | (A64F_IMMS(32-HASH_ROT2)), dest, dest, dest);
emit_dnm(as, A64I_SUBw, tmp, tmp, dest);
emit_dnm(as, A64I_EXTRw | (A64F_IMMS(32-HASH_ROT1)), dest, dest, dest);
emit_dnm(as, A64I_EORw, tmp, tmp, dest);
if (irt_isnum(kt)) {
emit_dnm(as, A64I_ADDw, dest, dest, dest);
emit_dn(as, A64I_LSRx | A64F_IMMR(32)|A64F_IMMS(32), dest, dest);
emit_dm(as, A64I_MOVw, tmp, dest);
emit_dn(as, A64I_FMOV_R_D, dest, (key & 31));
} else {
checkmclim(as);
emit_dm(as, A64I_MOVw, tmp, key);
emit_dnm(as, A64I_EORw, dest, dest,
ra_allock(as, irt_toitype(kt) << 15, allow));
emit_dn(as, A64I_LSRx | A64F_IMMR(32)|A64F_IMMS(32), dest, dest);
emit_dm(as, A64I_MOVx, dest, key);
}
}
}
}
static void asm_hrefk(ASMState *as, IRIns *ir)
{
IRIns *kslot = IR(ir->op2);
IRIns *irkey = IR(kslot->op1);
int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
int32_t kofs = ofs + (int32_t)offsetof(Node, key);
int bigofs = !emit_checkofs(A64I_LDRx, ofs);
RegSet allow = RSET_GPR;
Reg dest = (ra_used(ir) || bigofs) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
Reg node = ra_alloc1(as, ir->op1, allow);
Reg key = ra_scratch(as, rset_clear(allow, node));
Reg idx = node;
uint64_t k;
lua_assert(ofs % sizeof(Node) == 0);
rset_clear(allow, key);
if (bigofs) {
idx = dest;
rset_clear(allow, dest);
kofs = (int32_t)offsetof(Node, key);
} else if (ra_hasreg(dest)) {
emit_opk(as, A64I_ADDx, dest, node, ofs, allow);
}
asm_guardcc(as, CC_NE);
if (irt_ispri(irkey->t)) {
k = ~((int64_t)~irt_toitype(irkey->t) << 47);
} else if (irt_isnum(irkey->t)) {
k = ir_knum(irkey)->u64;
} else {
k = ((uint64_t)irt_toitype(irkey->t) << 47) | (uint64_t)ir_kgc(irkey);
}
emit_nm(as, A64I_CMPx, key, ra_allock(as, k, allow));
emit_lso(as, A64I_LDRx, key, idx, kofs);
if (bigofs)
emit_opk(as, A64I_ADDx, dest, node, ofs, RSET_GPR);
}
static void asm_uref(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
if (irref_isk(ir->op1)) {
GCfunc *fn = ir_kfunc(IR(ir->op1));
MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
emit_lsptr(as, A64I_LDRx, dest, v);
} else {
Reg uv = ra_scratch(as, RSET_GPR);
Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
if (ir->o == IR_UREFC) {
asm_guardcc(as, CC_NE);
emit_n(as, (A64I_CMPx^A64I_K12) | A64F_U12(1), RID_TMP);
emit_opk(as, A64I_ADDx, dest, uv,
(int32_t)offsetof(GCupval, tv), RSET_GPR);
emit_lso(as, A64I_LDRB, RID_TMP, uv, (int32_t)offsetof(GCupval, closed));
} else {
emit_lso(as, A64I_LDRx, dest, uv, (int32_t)offsetof(GCupval, v));
}
emit_lso(as, A64I_LDRx, uv, func,
(int32_t)offsetof(GCfuncL, uvptr) + 8*(int32_t)(ir->op2 >> 8));
}
}
static void asm_fref(ASMState *as, IRIns *ir)
{
UNUSED(as); UNUSED(ir);
lua_assert(!ra_used(ir));
}
static void asm_strref(ASMState *as, IRIns *ir)
{
RegSet allow = RSET_GPR;
Reg dest = ra_dest(as, ir, allow);
Reg base = ra_alloc1(as, ir->op1, allow);
IRIns *irr = IR(ir->op2);
int32_t ofs = sizeof(GCstr);
uint32_t m;
rset_clear(allow, base);
if (irref_isk(ir->op2) && (m = emit_isk12(ofs + irr->i))) {
emit_dn(as, A64I_ADDx^m, dest, base);
} else {
emit_dn(as, (A64I_ADDx^A64I_K12) | A64F_U12(ofs), dest, dest);
emit_dnm(as, A64I_ADDx, dest, base, ra_alloc1(as, ir->op2, allow));
}
}
/* -- Loads and stores ---------------------------------------------------- */
static A64Ins asm_fxloadins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: return A64I_LDRB ^ A64I_LS_S;
case IRT_U8: return A64I_LDRB;
case IRT_I16: return A64I_LDRH ^ A64I_LS_S;
case IRT_U16: return A64I_LDRH;
case IRT_NUM: return A64I_LDRd;
case IRT_FLOAT: return A64I_LDRs;
default: return irt_is64(ir->t) ? A64I_LDRx : A64I_LDRw;
}
}
static A64Ins asm_fxstoreins(IRIns *ir)
{
switch (irt_type(ir->t)) {
case IRT_I8: case IRT_U8: return A64I_STRB;
case IRT_I16: case IRT_U16: return A64I_STRH;
case IRT_NUM: return A64I_STRd;
case IRT_FLOAT: return A64I_STRs;
default: return irt_is64(ir->t) ? A64I_STRx : A64I_STRw;
}
}
static void asm_fload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg idx;
A64Ins ai = asm_fxloadins(ir);
int32_t ofs;
if (ir->op1 == REF_NIL) {
idx = RID_GL;
ofs = (ir->op2 << 2) - GG_OFS(g);
} else {
idx = ra_alloc1(as, ir->op1, RSET_GPR);
if (ir->op2 == IRFL_TAB_ARRAY) {
ofs = asm_fuseabase(as, ir->op1);
if (ofs) { /* Turn the t->array load into an add for colocated arrays. */
emit_dn(as, (A64I_ADDx^A64I_K12) | A64F_U12(ofs), dest, idx);
return;
}
}
ofs = field_ofs[ir->op2];
}
emit_lso(as, ai, (dest & 31), idx, ofs);
}
static void asm_fstore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
IRIns *irf = IR(ir->op1);
Reg idx = ra_alloc1(as, irf->op1, rset_exclude(RSET_GPR, src));
int32_t ofs = field_ofs[irf->op2];
emit_lso(as, asm_fxstoreins(ir), (src & 31), idx, ofs);
}
}
static void asm_xload(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
lua_assert(!(ir->op2 & IRXLOAD_UNALIGNED));
asm_fusexref(as, asm_fxloadins(ir), dest, ir->op1, RSET_GPR);
}
static void asm_xstore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
Reg src = ra_alloc1(as, ir->op2, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR);
asm_fusexref(as, asm_fxstoreins(ir), src, ir->op1,
rset_exclude(RSET_GPR, src));
}
}
static void asm_ahuvload(ASMState *as, IRIns *ir)
{
Reg idx, tmp, type;
int32_t ofs = 0;
RegSet gpr = RSET_GPR, allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
irt_isint(ir->t));
if (ra_used(ir)) {
Reg dest = ra_dest(as, ir, allow);
tmp = irt_isnum(ir->t) ? ra_scratch(as, rset_clear(gpr, dest)) : dest;
if (irt_isaddr(ir->t)) {
emit_dn(as, A64I_ANDx^emit_isk13(LJ_GCVMASK, 1), dest, dest);
} else if (irt_isnum(ir->t)) {
emit_dn(as, A64I_FMOV_D_R, (dest & 31), tmp);
} else if (irt_isint(ir->t)) {
emit_dm(as, A64I_MOVw, dest, dest);
}
} else {
tmp = ra_scratch(as, gpr);
}
type = ra_scratch(as, rset_clear(gpr, tmp));
idx = asm_fuseahuref(as, ir->op1, &ofs, rset_clear(gpr, type), A64I_LDRx);
/* Always do the type check, even if the load result is unused. */
asm_guardcc(as, irt_isnum(ir->t) ? CC_LS : CC_NE);
if (irt_type(ir->t) >= IRT_NUM) {
lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32),
ra_allock(as, LJ_TISNUM << 15, rset_exclude(gpr, idx)), tmp);
} else if (irt_isaddr(ir->t)) {
emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(-irt_toitype(ir->t)), type);
emit_dn(as, A64I_ASRx | A64F_IMMR(47), type, tmp);
} else if (irt_isnil(ir->t)) {
emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(1), tmp);
} else {
emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32),
ra_allock(as, (irt_toitype(ir->t) << 15) | 0x7fff, allow), tmp);
}
if (ofs & FUSE_REG)
emit_dnm(as, (A64I_LDRx^A64I_LS_R)|A64I_LS_UXTWx|A64I_LS_SH, tmp, idx, (ofs & 31));
else
emit_lso(as, A64I_LDRx, tmp, idx, ofs);
}
static void asm_ahustore(ASMState *as, IRIns *ir)
{
if (ir->r != RID_SINK) {
RegSet allow = RSET_GPR;
Reg idx, src = RID_NONE, tmp = RID_TMP, type = RID_NONE;
int32_t ofs = 0;
if (irt_isnum(ir->t)) {
src = ra_alloc1(as, ir->op2, RSET_FPR);
idx = asm_fuseahuref(as, ir->op1, &ofs, allow, A64I_STRd);
if (ofs & FUSE_REG)
emit_dnm(as, (A64I_STRd^A64I_LS_R)|A64I_LS_UXTWx|A64I_LS_SH, (src & 31), idx, (ofs &31));
else
emit_lso(as, A64I_STRd, (src & 31), idx, ofs);
} else {
if (!irt_ispri(ir->t)) {
src = ra_alloc1(as, ir->op2, allow);
rset_clear(allow, src);
if (irt_isinteger(ir->t))
type = ra_allock(as, (uint64_t)(int32_t)LJ_TISNUM << 47, allow);
else
type = ra_allock(as, irt_toitype(ir->t), allow);
} else {
tmp = type = ra_allock(as, ~((int64_t)~irt_toitype(ir->t)<<47), allow);
}
idx = asm_fuseahuref(as, ir->op1, &ofs, rset_exclude(allow, type),
A64I_STRx);
if (ofs & FUSE_REG)
emit_dnm(as, (A64I_STRx^A64I_LS_R)|A64I_LS_UXTWx|A64I_LS_SH, tmp, idx, (ofs & 31));
else
emit_lso(as, A64I_STRx, tmp, idx, ofs);
if (ra_hasreg(src)) {
if (irt_isinteger(ir->t)) {
emit_dnm(as, A64I_ADDx | A64F_EX(A64EX_UXTW), tmp, type, src);
} else {
emit_dnm(as, A64I_ADDx | A64F_SH(A64SH_LSL, 47), tmp, src, type);
}
}
}
}
}
static void asm_sload(ASMState *as, IRIns *ir)
{
int32_t ofs = 8*((int32_t)ir->op1-2);
IRType1 t = ir->t;
Reg dest = RID_NONE, base;
RegSet allow = RSET_GPR;
lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
dest = ra_scratch(as, RSET_FPR);
asm_tointg(as, ir, dest);
t.irt = IRT_NUM; /* Continue with a regular number type check. */
} else if (ra_used(ir)) {
Reg tmp = RID_NONE;
if ((ir->op2 & IRSLOAD_CONVERT))
tmp = ra_scratch(as, irt_isint(t) ? RSET_FPR : RSET_GPR);
lua_assert((irt_isnum(t)) || irt_isint(t) || irt_isaddr(t));
dest = ra_dest(as, ir, irt_isnum(t) ? RSET_FPR : allow);
base = ra_alloc1(as, REF_BASE, rset_clear(allow, dest));
if (irt_isaddr(t)) {
emit_dn(as, A64I_ANDx^emit_isk13(LJ_GCVMASK, 1), dest, dest);
} else if ((ir->op2 & IRSLOAD_CONVERT)) {
if (irt_isint(t)) {
emit_dn(as, A64I_FCVT_S32_F64, dest, (tmp & 31));
/* If value is already loaded for type check, move it to FPR. */
if ((ir->op2 & IRSLOAD_TYPECHECK))
emit_dn(as, A64I_FMOV_D_R, (tmp & 31), dest);
else
dest = tmp;
t.irt = IRT_NUM; /* Check for original type. */
} else {
emit_dn(as, A64I_FCVT_F64_S32, (dest & 31), tmp);
dest = tmp;
t.irt = IRT_INT; /* Check for original type. */
}
} else if (irt_isint(t) && (ir->op2 & IRSLOAD_TYPECHECK)) {
emit_dm(as, A64I_MOVw, dest, dest);
}
goto dotypecheck;
}
base = ra_alloc1(as, REF_BASE, allow);
dotypecheck:
rset_clear(allow, base);
if ((ir->op2 & IRSLOAD_TYPECHECK)) {
Reg tmp;
if (ra_hasreg(dest) && rset_test(RSET_GPR, dest)) {
tmp = dest;
} else {
tmp = ra_scratch(as, allow);
rset_clear(allow, tmp);
}
if (irt_isnum(t) && !(ir->op2 & IRSLOAD_CONVERT))
emit_dn(as, A64I_FMOV_D_R, (dest & 31), tmp);
/* Need type check, even if the load result is unused. */
asm_guardcc(as, irt_isnum(t) ? CC_LS : CC_NE);
if (irt_type(t) >= IRT_NUM) {
lua_assert(irt_isinteger(t) || irt_isnum(t));
emit_nm(as, A64I_CMPx | A64F_SH(A64SH_LSR, 32),
ra_allock(as, LJ_TISNUM << 15, allow), tmp);
} else if (irt_isnil(t)) {
emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(1), tmp);
} else if (irt_ispri(t)) {
emit_nm(as, A64I_CMPx,
ra_allock(as, ~((int64_t)~irt_toitype(t) << 47) , allow), tmp);
} else {
Reg type = ra_scratch(as, allow);
emit_n(as, (A64I_CMNx^A64I_K12) | A64F_U12(-irt_toitype(t)), type);
emit_dn(as, A64I_ASRx | A64F_IMMR(47), type, tmp);
}
emit_lso(as, A64I_LDRx, tmp, base, ofs);
return;
}
if (ra_hasreg(dest)) {
emit_lso(as, irt_isnum(t) ? A64I_LDRd :
(irt_isint(t) ? A64I_LDRw : A64I_LDRx), (dest & 31), base,
ofs ^ ((LJ_BE && irt_isint(t) ? 4 : 0)));
}
}
/* -- Allocations --------------------------------------------------------- */
#if LJ_HASFFI
static void asm_cnew(ASMState *as, IRIns *ir)
{
CTState *cts = ctype_ctsG(J2G(as->J));
CTypeID id = (CTypeID)IR(ir->op1)->i;
CTSize sz;
CTInfo info = lj_ctype_info(cts, id, &sz);
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
IRRef args[4];
RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
lua_assert(sz != CTSIZE_INVALID || (ir->o == IR_CNEW && ir->op2 != REF_NIL));
as->gcsteps++;
asm_setupresult(as, ir, ci); /* GCcdata * */
/* Initialize immutable cdata object. */
if (ir->o == IR_CNEWI) {
int32_t ofs = sizeof(GCcdata);
Reg r = ra_alloc1(as, ir->op2, allow);
lua_assert(sz == 4 || sz == 8);
emit_lso(as, sz == 8 ? A64I_STRx : A64I_STRw, r, RID_RET, ofs);
} else if (ir->op2 != REF_NIL) { /* Create VLA/VLS/aligned cdata. */
ci = &lj_ir_callinfo[IRCALL_lj_cdata_newv];
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ir->op1; /* CTypeID id */
args[2] = ir->op2; /* CTSize sz */
args[3] = ASMREF_TMP1; /* CTSize align */
asm_gencall(as, ci, args);
emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)ctype_align(info));
return;
}
/* Initialize gct and ctypeid. lj_mem_newgco() already sets marked. */
{
Reg r = (id < 65536) ? RID_X1 : ra_allock(as, id, allow);
emit_lso(as, A64I_STRB, RID_TMP, RID_RET, offsetof(GCcdata, gct));
emit_lso(as, A64I_STRH, r, RID_RET, offsetof(GCcdata, ctypeid));
emit_d(as, A64I_MOVZw | A64F_U16(~LJ_TCDATA), RID_TMP);
if (id < 65536) emit_d(as, A64I_MOVZw | A64F_U16(id), RID_X1);
}
args[0] = ASMREF_L; /* lua_State *L */
args[1] = ASMREF_TMP1; /* MSize size */
asm_gencall(as, ci, args);
ra_allockreg(as, (int32_t)(sz+sizeof(GCcdata)),
ra_releasetmp(as, ASMREF_TMP1));
}
#else
#define asm_cnew(as, ir) ((void)0)
#endif
/* -- Write barriers ------------------------------------------------------ */
static void asm_tbar(ASMState *as, IRIns *ir)
{
Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
Reg link = ra_scratch(as, rset_exclude(RSET_GPR, tab));
Reg gr = ra_allock(as, i64ptr(J2G(as->J)),
rset_exclude(rset_exclude(RSET_GPR, tab), link));
Reg mark = RID_TMP;
MCLabel l_end = emit_label(as);
emit_lso(as, A64I_STRx, link, tab, (int32_t)offsetof(GCtab, gclist));
emit_lso(as, A64I_STRB, mark, tab, (int32_t)offsetof(GCtab, marked));
emit_lso(as, A64I_STRx, tab, gr,
(int32_t)offsetof(global_State, gc.grayagain));
emit_dn(as, A64I_ANDw^emit_isk13(~LJ_GC_BLACK, 0), mark, mark);
emit_lso(as, A64I_LDRx, link, gr,
(int32_t)offsetof(global_State, gc.grayagain));
emit_cond_branch(as, CC_EQ, l_end);
emit_n(as, A64I_TSTw^emit_isk13(LJ_GC_BLACK, 0), mark);
emit_lso(as, A64I_LDRB, mark, tab, (int32_t)offsetof(GCtab, marked));
}
static void asm_obar(ASMState *as, IRIns *ir)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
IRRef args[2];
MCLabel l_end;
RegSet allow = RSET_GPR;
Reg obj, val, tmp;
/* No need for other object barriers (yet). */
lua_assert(IR(ir->op1)->o == IR_UREFC);
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ir->op1; /* TValue *tv */
asm_gencall(as, ci, args);
ra_allockreg(as, i64ptr(J2G(as->J)), ra_releasetmp(as, ASMREF_TMP1) );
obj = IR(ir->op1)->r;
tmp = ra_scratch(as, rset_exclude(allow, obj));
emit_cond_branch(as, CC_EQ, l_end);
emit_n(as, A64I_TSTw^emit_isk13(LJ_GC_BLACK, 0), tmp);
emit_cond_branch(as, CC_EQ, l_end);
emit_n(as, A64I_TSTw^emit_isk13(LJ_GC_WHITES, 0), RID_TMP);
val = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, obj));
emit_lso(as, A64I_LDRB, tmp, obj,
(int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
emit_lso(as, A64I_LDRB, RID_TMP, val, (int32_t)offsetof(GChead, marked));
}
/* -- Arithmetic and logic operations ------------------------------------- */
static void asm_fparith(ASMState *as, IRIns *ir, A64Ins ai)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = (left >> 8); left &= 255;
emit_dnm(as, ai, (dest & 31), (left & 31), (right & 31));
}
static void asm_fpunary(ASMState *as, IRIns *ir, A64Ins ai)
{
Reg dest = ra_dest(as, ir, RSET_FPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_FPR);
emit_dn(as, ai, (dest & 31), (left & 31));
}
static void asm_fpmath(ASMState *as, IRIns *ir)
{
IRFPMathOp fpm = (IRFPMathOp)ir->op2;
if (fpm == IRFPM_SQRT) {
asm_fpunary(as, ir, A64I_FSQRTd);
} else if (fpm <= IRFPM_TRUNC) {
asm_fpunary(as, ir, fpm == IRFPM_FLOOR ? A64I_FRINTMd :
fpm == IRFPM_CEIL ? A64I_FRINTPd : A64I_FRINTZd);
} else if (fpm == IRFPM_EXP2 && asm_fpjoin_pow(as, ir)) {
return;
} else {
asm_callid(as, ir, IRCALL_lj_vm_floor + fpm);
}
}
static int asm_swapops(ASMState *as, IRRef lref, IRRef rref)
{
IRIns *ir;
if (irref_isk(rref))
return 0; /* Don't swap constants to the left. */
if (irref_isk(lref))
return 1; /* But swap constants to the right. */
ir = IR(rref);
if ((ir->o >= IR_BSHL && ir->o <= IR_BSAR) ||
(ir->o == IR_ADD && ir->op1 == ir->op2) ||
(ir->o == IR_CONV && ir->op2 == ((IRT_I64<<IRCONV_DSH)|IRT_INT|IRCONV_SEXT)))
return 0; /* Don't swap fusable operands to the left. */
ir = IR(lref);
if ((ir->o >= IR_BSHL && ir->o <= IR_BSAR) ||
(ir->o == IR_ADD && ir->op1 == ir->op2) ||
(ir->o == IR_CONV && ir->op2 == ((IRT_I64<<IRCONV_DSH)|IRT_INT|IRCONV_SEXT)))
return 1; /* But swap fusable operands to the right. */
return 0; /* Otherwise don't swap. */
}
static void asm_intop(ASMState *as, IRIns *ir, A64Ins ai)
{
IRRef lref = ir->op1, rref = ir->op2;
Reg left, dest = ra_dest(as, ir, RSET_GPR);
uint32_t m;
if ((ai & ~A64I_S) != A64I_SUBw && asm_swapops(as, lref, rref)) {
IRRef tmp = lref; lref = rref; rref = tmp;
}
left = ra_hintalloc(as, lref, dest, RSET_GPR);
if (irt_is64(ir->t)) ai |= A64I_X;
m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left));
if (irt_isguard(ir->t)) { /* For IR_ADDOV etc. */
asm_guardcc(as, CC_VS);
ai |= A64I_S;
}
emit_dn(as, ai^m, dest, left);
}
static void asm_intop_s(ASMState *as, IRIns *ir, A64Ins ai)
{
if (as->flagmcp == as->mcp) { /* Drop cmp r, #0. */
as->flagmcp = NULL;
as->mcp++;
ai |= A64I_S;
}
asm_intop(as, ir, ai);
}
static void asm_intneg(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
emit_dm(as, irt_is64(ir->t) ? A64I_NEGx : A64I_NEGw, dest, left);
}
/* NYI: use add/shift for MUL(OV) with constants. FOLD only does 2^k. */
static void asm_intmul(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, rset_exclude(RSET_GPR, dest));
Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
if (irt_isguard(ir->t)) { /* IR_MULOV */
asm_guardcc(as, CC_NE);
emit_dm(as, A64I_MOVw, dest, dest); /* Zero-extend. */
emit_nm(as, A64I_CMPw | A64F_SH(A64SH_ASR, 31), RID_TMP, dest);
emit_dn(as, A64I_ASRx | A64F_IMMR(32), RID_TMP, dest);
emit_dnm(as, A64I_SMULL, dest, right, left);
} else {
emit_dnm(as, irt_is64(ir->t) ? A64I_MULx : A64I_MULw, dest, left, right);
}
}
static void asm_add(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
if (!asm_fusemadd(as, ir, A64I_FMADDd, A64I_FMADDd))
asm_fparith(as, ir, A64I_FADDd);
return;
}
asm_intop_s(as, ir, A64I_ADDw);
}
static void asm_sub(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
if (!asm_fusemadd(as, ir, A64I_FNMSUBd, A64I_FMSUBd))
asm_fparith(as, ir, A64I_FSUBd);
return;
}
asm_intop_s(as, ir, A64I_SUBw);
}
static void asm_mul(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fparith(as, ir, A64I_FMULd);
return;
}
asm_intmul(as, ir);
}
static void asm_div(ASMState *as, IRIns *ir)
{
#if LJ_HASFFI
if (!irt_isnum(ir->t))
asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
IRCALL_lj_carith_divu64);
else
#endif
asm_fparith(as, ir, A64I_FDIVd);
}
static void asm_pow(ASMState *as, IRIns *ir)
{
#if LJ_HASFFI
if (!irt_isnum(ir->t))
asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
IRCALL_lj_carith_powu64);
else
#endif
asm_callid(as, ir, IRCALL_lj_vm_powi);
}
#define asm_addov(as, ir) asm_add(as, ir)
#define asm_subov(as, ir) asm_sub(as, ir)
#define asm_mulov(as, ir) asm_mul(as, ir)
#define asm_abs(as, ir) asm_fpunary(as, ir, A64I_FABS)
#define asm_atan2(as, ir) asm_callid(as, ir, IRCALL_atan2)
#define asm_ldexp(as, ir) asm_callid(as, ir, IRCALL_ldexp)
static void asm_mod(ASMState *as, IRIns *ir)
{
#if LJ_HASFFI
if (!irt_isint(ir->t))
asm_callid(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
IRCALL_lj_carith_modu64);
else
#endif
asm_callid(as, ir, IRCALL_lj_vm_modi);
}
static void asm_neg(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t)) {
asm_fpunary(as, ir, A64I_FNEGd);
return;
}
asm_intneg(as, ir);
}
static void asm_band(ASMState *as, IRIns *ir)
{
A64Ins ai = A64I_ANDw;
if (asm_fuseandshift(as, ir))
return;
if (as->flagmcp == as->mcp) {
/* Try to drop cmp r, #0. */
as->flagmcp = NULL;
as->mcp++;
ai = A64I_ANDSw;
}
asm_intop(as, ir, ai);
}
static void asm_borbxor(ASMState *as, IRIns *ir, A64Ins ai)
{
IRRef lref = ir->op1, rref = ir->op2;
IRIns *irl = IR(lref), *irr = IR(rref);
if ((canfuse(as, irl) && irl->o == IR_BNOT && !irref_isk(rref)) ||
(canfuse(as, irr) && irr->o == IR_BNOT && !irref_isk(lref))) {
Reg left, dest = ra_dest(as, ir, RSET_GPR);
uint32_t m;
if (irl->o == IR_BNOT) {
IRRef tmp = lref; lref = rref; rref = tmp;
}
left = ra_alloc1(as, lref, RSET_GPR);
ai |= A64I_ON;
if (irt_is64(ir->t)) ai |= A64I_X;
m = asm_fuseopm(as, ai, IR(rref)->op1, rset_exclude(RSET_GPR, left));
emit_dn(as, ai^m, dest, left);
} else {
asm_intop(as, ir, ai);
}
}
static void asm_bor(ASMState *as, IRIns *ir)
{
if (asm_fuseorshift(as, ir))
return;
asm_borbxor(as, ir, A64I_ORRw);
}
#define asm_bxor(as, ir) asm_borbxor(as, ir, A64I_EORw)
static void asm_bnot(ASMState *as, IRIns *ir)
{
A64Ins ai = A64I_MVNw;
Reg dest = ra_dest(as, ir, RSET_GPR);
uint32_t m = asm_fuseopm(as, ai, ir->op1, RSET_GPR);
if (irt_is64(ir->t)) ai |= A64I_X;
emit_d(as, ai^m, dest);
}
static void asm_bswap(ASMState *as, IRIns *ir)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
emit_dn(as, irt_is64(ir->t) ? A64I_REVx : A64I_REVw, dest, left);
}
static void asm_bitshift(ASMState *as, IRIns *ir, A64Ins ai, A64Shift sh)
{
int32_t shmask = irt_is64(ir->t) ? 63 : 31;
if (irref_isk(ir->op2)) { /* Constant shifts. */
Reg left, dest = ra_dest(as, ir, RSET_GPR);
int32_t shift = (IR(ir->op2)->i & shmask);
IRIns *irl = IR(ir->op1);
if (shmask == 63) ai += A64I_UBFMx - A64I_UBFMw;
/* Fuse BSHL + BSHR/BSAR into UBFM/SBFM aka UBFX/SBFX/UBFIZ/SBFIZ. */
if ((sh == A64SH_LSR || sh == A64SH_ASR) && canfuse(as, irl)) {
if (irl->o == IR_BSHL && irref_isk(irl->op2)) {
int32_t shift2 = (IR(irl->op2)->i & shmask);
shift = ((shift - shift2) & shmask);
shmask -= shift2;
ir = irl;
}
}
left = ra_alloc1(as, ir->op1, RSET_GPR);
switch (sh) {
case A64SH_LSL:
emit_dn(as, ai | A64F_IMMS(shmask-shift) |
A64F_IMMR((shmask-shift+1)&shmask), dest, left);
break;
case A64SH_LSR: case A64SH_ASR:
emit_dn(as, ai | A64F_IMMS(shmask) | A64F_IMMR(shift), dest, left);
break;
case A64SH_ROR:
emit_dnm(as, ai | A64F_IMMS(shift), dest, left, left);
break;
}
} else { /* Variable-length shifts. */
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_alloc1(as, ir->op1, RSET_GPR);
Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_dnm(as, (shmask == 63 ? A64I_SHRx : A64I_SHRw) | A64F_BSH(sh), dest, left, right);
}
}
#define asm_bshl(as, ir) asm_bitshift(as, ir, A64I_UBFMw, A64SH_LSL)
#define asm_bshr(as, ir) asm_bitshift(as, ir, A64I_UBFMw, A64SH_LSR)
#define asm_bsar(as, ir) asm_bitshift(as, ir, A64I_SBFMw, A64SH_ASR)
#define asm_bror(as, ir) asm_bitshift(as, ir, A64I_EXTRw, A64SH_ROR)
#define asm_brol(as, ir) lua_assert(0)
static void asm_intmin_max(ASMState *as, IRIns *ir, A64CC cc)
{
Reg dest = ra_dest(as, ir, RSET_GPR);
Reg left = ra_hintalloc(as, ir->op1, dest, RSET_GPR);
Reg right = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, left));
emit_dnm(as, A64I_CSELw|A64F_CC(cc), dest, left, right);
emit_nm(as, A64I_CMPw, left, right);
}
static void asm_fpmin_max(ASMState *as, IRIns *ir, A64CC fcc)
{
Reg dest = (ra_dest(as, ir, RSET_FPR) & 31);
Reg right, left = ra_alloc2(as, ir, RSET_FPR);
right = ((left >> 8) & 31); left &= 31;
emit_dnm(as, A64I_FCSELd | A64F_CC(fcc), dest, left, right);
emit_nm(as, A64I_FCMPd, left, right);
}
static void asm_min_max(ASMState *as, IRIns *ir, A64CC cc, A64CC fcc)
{
if (irt_isnum(ir->t))
asm_fpmin_max(as, ir, fcc);
else
asm_intmin_max(as, ir, cc);
}
#define asm_max(as, ir) asm_min_max(as, ir, CC_GT, CC_HI)
#define asm_min(as, ir) asm_min_max(as, ir, CC_LT, CC_LO)
/* -- Comparisons --------------------------------------------------------- */
/* Map of comparisons to flags. ORDER IR. */
static const uint8_t asm_compmap[IR_ABC+1] = {
/* op FP swp int cc FP cc */
/* LT */ CC_GE + (CC_HS << 4),
/* GE x */ CC_LT + (CC_HI << 4),
/* LE */ CC_GT + (CC_HI << 4),
/* GT x */ CC_LE + (CC_HS << 4),
/* ULT x */ CC_HS + (CC_LS << 4),
/* UGE */ CC_LO + (CC_LO << 4),
/* ULE x */ CC_HI + (CC_LO << 4),
/* UGT */ CC_LS + (CC_LS << 4),
/* EQ */ CC_NE + (CC_NE << 4),
/* NE */ CC_EQ + (CC_EQ << 4),
/* ABC */ CC_LS + (CC_LS << 4) /* Same as UGT. */
};
/* FP comparisons. */
static void asm_fpcomp(ASMState *as, IRIns *ir)
{
Reg left, right;
A64Ins ai;
int swp = ((ir->o ^ (ir->o >> 2)) & ~(ir->o >> 3) & 1);
if (!swp && irref_isk(ir->op2) && ir_knum(IR(ir->op2))->u64 == 0) {
left = (ra_alloc1(as, ir->op1, RSET_FPR) & 31);
right = 0;
ai = A64I_FCMPZd;
} else {
left = ra_alloc2(as, ir, RSET_FPR);
if (swp) {
right = (left & 31); left = ((left >> 8) & 31);
} else {
right = ((left >> 8) & 31); left &= 31;
}
ai = A64I_FCMPd;
}
asm_guardcc(as, (asm_compmap[ir->o] >> 4));
emit_nm(as, ai, left, right);
}
/* Integer comparisons. */
static void asm_intcomp(ASMState *as, IRIns *ir)
{
A64CC oldcc, cc = (asm_compmap[ir->o] & 15);
A64Ins ai = irt_is64(ir->t) ? A64I_CMPx : A64I_CMPw;
IRRef lref = ir->op1, rref = ir->op2;
Reg left;
uint32_t m;
int cmpprev0 = 0;
lua_assert(irt_is64(ir->t) || irt_isint(ir->t) ||
irt_isu32(ir->t) || irt_isaddr(ir->t) || irt_isu8(ir->t));
if (asm_swapops(as, lref, rref)) {
IRRef tmp = lref; lref = rref; rref = tmp;
if (cc >= CC_GE) cc ^= 7; /* LT <-> GT, LE <-> GE */
else if (cc > CC_NE) cc ^= 11; /* LO <-> HI, LS <-> HS */
}
oldcc = cc;
if (irref_isk(rref) && get_k64val(IR(rref)) == 0) {
IRIns *irl = IR(lref);
if (cc == CC_GE) cc = CC_PL;
else if (cc == CC_LT) cc = CC_MI;
else if (cc > CC_NE) goto nocombine; /* Other conds don't work with tst. */
cmpprev0 = (irl+1 == ir);
/* Combine and-cmp-bcc into tbz/tbnz or and-cmp into tst. */
if (cmpprev0 && irl->o == IR_BAND && !ra_used(irl)) {
IRRef blref = irl->op1, brref = irl->op2;
uint32_t m2 = 0;
Reg bleft;
if (asm_swapops(as, blref, brref)) {
Reg tmp = blref; blref = brref; brref = tmp;
}
if (irref_isk(brref)) {
uint64_t k = get_k64val(IR(brref));
if (k && !(k & (k-1)) && (cc == CC_EQ || cc == CC_NE)) {
asm_guardtnb(as, cc == CC_EQ ? A64I_TBZ : A64I_TBNZ,
ra_alloc1(as, blref, RSET_GPR), emit_ctz64(k));
return;
}
m2 = emit_isk13(k, irt_is64(irl->t));
}
bleft = ra_alloc1(as, blref, RSET_GPR);
ai = (irt_is64(irl->t) ? A64I_TSTx : A64I_TSTw);
if (!m2)
m2 = asm_fuseopm(as, ai, brref, rset_exclude(RSET_GPR, bleft));
asm_guardcc(as, cc);
emit_n(as, ai^m2, bleft);
return;
}
if (cc == CC_EQ || cc == CC_NE) {
/* Combine cmp-bcc into cbz/cbnz. */
ai = cc == CC_EQ ? A64I_CBZ : A64I_CBNZ;
if (irt_is64(ir->t)) ai |= A64I_X;
asm_guardcnb(as, ai, ra_alloc1(as, lref, RSET_GPR));
return;
}
}
nocombine:
left = ra_alloc1(as, lref, RSET_GPR);
m = asm_fuseopm(as, ai, rref, rset_exclude(RSET_GPR, left));
asm_guardcc(as, cc);
emit_n(as, ai^m, left);
/* Signed comparison with zero and referencing previous ins? */
if (cmpprev0 && (oldcc <= CC_NE || oldcc >= CC_GE))
as->flagmcp = as->mcp; /* Allow elimination of the compare. */
}
static void asm_comp(ASMState *as, IRIns *ir)
{
if (irt_isnum(ir->t))
asm_fpcomp(as, ir);
else
asm_intcomp(as, ir);
}
#define asm_equal(as, ir) asm_comp(as, ir)
/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
static void asm_hiop(ASMState *as, IRIns *ir)
{
UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on 64 bit. */
}
/* -- Profiling ----------------------------------------------------------- */
static void asm_prof(ASMState *as, IRIns *ir)
{
uint32_t k = emit_isk13(HOOK_PROFILE, 0);
lua_assert(k != 0);
UNUSED(ir);
asm_guardcc(as, CC_NE);
emit_n(as, A64I_TSTw^k, RID_TMP);
emit_lsptr(as, A64I_LDRB, RID_TMP, (void *)&J2G(as->J)->hookmask);
}
/* -- Stack handling ------------------------------------------------------ */
/* Check Lua stack size for overflow. Use exit handler as fallback. */
static void asm_stack_check(ASMState *as, BCReg topslot,
IRIns *irp, RegSet allow, ExitNo exitno)
{
Reg pbase;
uint32_t k;
if (irp) {
if (!ra_hasspill(irp->s)) {
pbase = irp->r;
lua_assert(ra_hasreg(pbase));
} else if (allow) {
pbase = rset_pickbot(allow);
} else {
pbase = RID_RET;
emit_lso(as, A64I_LDRx, RID_RET, RID_SP, 0); /* Restore temp register. */
}
} else {
pbase = RID_BASE;
}
emit_cond_branch(as, CC_LS, asm_exitstub_addr(as, exitno));
k = emit_isk12((8*topslot));
lua_assert(k);
emit_n(as, A64I_CMPx^k, RID_TMP);
emit_dnm(as, A64I_SUBx, RID_TMP, RID_TMP, pbase);
emit_lso(as, A64I_LDRx, RID_TMP, RID_TMP,
(int32_t)offsetof(lua_State, maxstack));
if (irp) { /* Must not spill arbitrary registers in head of side trace. */
if (ra_hasspill(irp->s))
emit_lso(as, A64I_LDRx, pbase, RID_SP, sps_scale(irp->s));
emit_lso(as, A64I_LDRx, RID_TMP, RID_GL, glofs(as, &J2G(as->J)->cur_L));
if (ra_hasspill(irp->s) && !allow)
emit_lso(as, A64I_STRx, RID_RET, RID_SP, 0); /* Save temp register. */
} else {
emit_getgl(as, RID_TMP, cur_L);
}
}
/* Restore Lua stack from on-trace state. */
static void asm_stack_restore(ASMState *as, SnapShot *snap)
{
SnapEntry *map = &as->T->snapmap[snap->mapofs];
#ifdef LUA_USE_ASSERT
SnapEntry *flinks = &as->T->snapmap[snap_nextofs(as->T, snap)-1-LJ_FR2];
#endif
MSize n, nent = snap->nent;
/* Store the value of all modified slots to the Lua stack. */
for (n = 0; n < nent; n++) {
SnapEntry sn = map[n];
BCReg s = snap_slot(sn);
int32_t ofs = 8*((int32_t)s-1-LJ_FR2);
IRRef ref = snap_ref(sn);
IRIns *ir = IR(ref);
if ((sn & SNAP_NORESTORE))
continue;
if (irt_isnum(ir->t)) {
Reg src = ra_alloc1(as, ref, RSET_FPR);
emit_lso(as, A64I_STRd, (src & 31), RID_BASE, ofs);
} else {
asm_tvstore64(as, RID_BASE, ofs, ref);
}
checkmclim(as);
}
lua_assert(map + nent == flinks);
}
/* -- GC handling --------------------------------------------------------- */
/* Check GC threshold and do one or more GC steps. */
static void asm_gc_check(ASMState *as)
{
const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
IRRef args[2];
MCLabel l_end;
Reg tmp1, tmp2;
ra_evictset(as, RSET_SCRATCH);
l_end = emit_label(as);
/* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
asm_guardcnb(as, A64I_CBNZ, RID_RET); /* Assumes asm_snap_prep() is done. */
args[0] = ASMREF_TMP1; /* global_State *g */
args[1] = ASMREF_TMP2; /* MSize steps */
asm_gencall(as, ci, args);
tmp1 = ra_releasetmp(as, ASMREF_TMP1);
tmp2 = ra_releasetmp(as, ASMREF_TMP2);
emit_loadi(as, tmp2, as->gcsteps);
/* Jump around GC step if GC total < GC threshold. */
emit_cond_branch(as, CC_LS, l_end);
emit_nm(as, A64I_CMPx, RID_TMP, tmp2);
emit_lso(as, A64I_LDRx, tmp2, tmp1,
(int32_t)offsetof(global_State, gc.threshold));
emit_lso(as, A64I_LDRx, RID_TMP, tmp1,
(int32_t)offsetof(global_State, gc.total));
ra_allockreg(as, i64ptr(J2G(as->J)), tmp1);
as->gcsteps = 0;
checkmclim(as);
}
/* -- Loop handling ------------------------------------------------------- */
/* Fixup the loop branch. */
static void asm_loop_fixup(ASMState *as)
{
MCode *p = as->mctop;
MCode *target = as->mcp;
if (as->loopinv) { /* Inverted loop branch? */
uint32_t mask = (p[-2] & 0x7e000000) == 0x36000000 ? 0x3fffu : 0x7ffffu;
ptrdiff_t delta = target - (p - 2);
/* asm_guard* already inverted the bcc/tnb/cnb and patched the final b. */
p[-2] |= ((uint32_t)delta & mask) << 5;
} else {
ptrdiff_t delta = target - (p - 1);
p[-1] = A64I_B | ((uint32_t)(delta) & 0x03ffffffu);
}
}
/* -- Head of trace ------------------------------------------------------- */
/* Reload L register from g->cur_L. */
static void asm_head_lreg(ASMState *as)
{
IRIns *ir = IR(ASMREF_L);
if (ra_used(ir)) {
Reg r = ra_dest(as, ir, RSET_GPR);
emit_getgl(as, r, cur_L);
ra_evictk(as);
}
}
/* Coalesce BASE register for a root trace. */
static void asm_head_root_base(ASMState *as)
{
IRIns *ir;
asm_head_lreg(as);
ir = IR(REF_BASE);
if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t)))
ra_spill(as, ir);
ra_destreg(as, ir, RID_BASE);
}
/* Coalesce BASE register for a side trace. */
static RegSet asm_head_side_base(ASMState *as, IRIns *irp, RegSet allow)
{
IRIns *ir;
asm_head_lreg(as);
ir = IR(REF_BASE);
if (ra_hasreg(ir->r) && (rset_test(as->modset, ir->r) || irt_ismarked(ir->t)))
ra_spill(as, ir);
if (ra_hasspill(irp->s)) {
rset_clear(allow, ra_dest(as, ir, allow));
} else {
Reg r = irp->r;
lua_assert(ra_hasreg(r));
rset_clear(allow, r);
if (r != ir->r && !rset_test(as->freeset, r))
ra_restore(as, regcost_ref(as->cost[r]));
ra_destreg(as, ir, r);
}
return allow;
}
/* -- Tail of trace ------------------------------------------------------- */
/* Fixup the tail code. */
static void asm_tail_fixup(ASMState *as, TraceNo lnk)
{
MCode *p = as->mctop;
MCode *target;
/* Undo the sp adjustment in BC_JLOOP when exiting to the interpreter. */
int32_t spadj = as->T->spadjust + (lnk ? 0 : sps_scale(SPS_FIXED));
if (spadj == 0) {
*--p = A64I_LE(A64I_NOP);
as->mctop = p;
} else {
/* Patch stack adjustment. */
uint32_t k = emit_isk12(spadj);
lua_assert(k);
p[-2] = (A64I_ADDx^k) | A64F_D(RID_SP) | A64F_N(RID_SP);
}
/* Patch exit branch. */
target = lnk ? traceref(as->J, lnk)->mcode : (MCode *)lj_vm_exit_interp;
p[-1] = A64I_B | (((target-p)+1)&0x03ffffffu);
}
/* Prepare tail of code. */
static void asm_tail_prep(ASMState *as)
{
MCode *p = as->mctop - 1; /* Leave room for exit branch. */
if (as->loopref) {
as->invmcp = as->mcp = p;
} else {
as->mcp = p-1; /* Leave room for stack pointer adjustment. */
as->invmcp = NULL;
}
*p = 0; /* Prevent load/store merging. */
}
/* -- Trace setup --------------------------------------------------------- */
/* Ensure there are enough stack slots for call arguments. */
static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
{
IRRef args[CCI_NARGS_MAX*2];
uint32_t i, nargs = CCI_XNARGS(ci);
int nslots = 0, ngpr = REGARG_NUMGPR, nfpr = REGARG_NUMFPR;
asm_collectargs(as, ir, ci, args);
for (i = 0; i < nargs; i++) {
if (args[i] && irt_isfp(IR(args[i])->t)) {
if (nfpr > 0) nfpr--; else nslots += 2;
} else {
if (ngpr > 0) ngpr--; else nslots += 2;
}
}
if (nslots > as->evenspill) /* Leave room for args in stack slots. */
as->evenspill = nslots;
return REGSP_HINT(RID_RET);
}
static void asm_setup_target(ASMState *as)
{
/* May need extra exit for asm_stack_check on side traces. */
asm_exitstub_setup(as, as->T->nsnap + (as->parent ? 1 : 0));
}
#if LJ_BE
/* ARM64 instructions are always little-endian. Swap for ARM64BE. */
static void asm_mcode_fixup(MCode *mcode, MSize size)
{
MCode *pe = (MCode *)((char *)mcode + size);
while (mcode < pe) {
MCode ins = *mcode;
*mcode++ = lj_bswap(ins);
}
}
#define LJ_TARGET_MCODE_FIXUP 1
#endif
/* -- Trace patching ------------------------------------------------------ */
/* Patch exit jumps of existing machine code to a new target. */
void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
{
MCode *p = T->mcode;
MCode *pe = (MCode *)((char *)p + T->szmcode);
MCode *cstart = NULL, *cend = p;
MCode *mcarea = lj_mcode_patch(J, p, 0);
MCode *px = exitstub_trace_addr(T, exitno);
for (; p < pe; p++) {
/* Look for exitstub branch, replace with branch to target. */
MCode ins = A64I_LE(*p);
if ((ins & 0xff000000u) == 0x54000000u &&
((ins ^ ((px-p)<<5)) & 0x00ffffe0u) == 0) {
/* Patch bcc exitstub. */
*p = A64I_LE((ins & 0xff00001fu) | (((target-p)<<5) & 0x00ffffe0u));
cend = p+1;
if (!cstart) cstart = p;
} else if ((ins & 0xfc000000u) == 0x14000000u &&
((ins ^ (px-p)) & 0x03ffffffu) == 0) {
/* Patch b exitstub. */
*p = A64I_LE((ins & 0xfc000000u) | ((target-p) & 0x03ffffffu));
cend = p+1;
if (!cstart) cstart = p;
} else if ((ins & 0x7e000000u) == 0x34000000u &&
((ins ^ ((px-p)<<5)) & 0x00ffffe0u) == 0) {
/* Patch cbz/cbnz exitstub. */
*p = A64I_LE((ins & 0xff00001f) | (((target-p)<<5) & 0x00ffffe0u));
cend = p+1;
if (!cstart) cstart = p;
} else if ((ins & 0x7e000000u) == 0x36000000u &&
((ins ^ ((px-p)<<5)) & 0x0007ffe0u) == 0) {
/* Patch tbz/tbnz exitstub. */
*p = A64I_LE((ins & 0xfff8001fu) | (((target-p)<<5) & 0x0007ffe0u));
cend = p+1;
if (!cstart) cstart = p;
}
}
lua_assert(cstart != NULL);
lj_mcode_sync(cstart, cend);
lj_mcode_patch(J, mcarea, 1);
}