Aegisub/aegisub/libass/ass_strtod.c
Grigori Goronzy e341e05fa2 Update libass to commit 8db4a5.
Originally committed to SVN as r3970.
2010-01-10 21:09:48 +00:00

247 lines
7 KiB
C

/*
* Copyright (c) 1988-1993 The Regents of the University of California.
* Copyright (c) 1994 Sun Microsystems, Inc.
*
* Permission to use, copy, modify, and distribute this
* software and its documentation for any purpose and without
* fee is hereby granted, provided that the above copyright
* notice appear in all copies. The University of California
* makes no representations about the suitability of this
* software for any purpose. It is provided "as is" without
* express or implied warranty.
*
*/
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
static int maxExponent = 511; /* Largest possible base 10 exponent. Any
* exponent larger than this will already
* produce underflow or overflow, so there's
* no need to worry about additional digits.
*/
static double powersOf10[] = { /* Table giving binary powers of 10. Entry */
10., /* is 10^2^i. Used to convert decimal */
100., /* exponents into floating-point numbers. */
1.0e4,
1.0e8,
1.0e16,
1.0e32,
1.0e64,
1.0e128,
1.0e256
};
/*
*----------------------------------------------------------------------
*
* strtod --
*
* This procedure converts a floating-point number from an ASCII
* decimal representation to internal double-precision format.
*
* Results:
* The return value is the double-precision floating-point
* representation of the characters in string. If endPtr isn't
* NULL, then *endPtr is filled in with the address of the
* next character after the last one that was part of the
* floating-point number.
*
* Side effects:
* None.
*
*----------------------------------------------------------------------
*/
double
ass_strtod(string, endPtr)
const char *string; /* A decimal ASCII floating-point number,
* optionally preceded by white space.
* Must have form "-I.FE-X", where I is the
* integer part of the mantissa, F is the
* fractional part of the mantissa, and X
* is the exponent. Either of the signs
* may be "+", "-", or omitted. Either I
* or F may be omitted, or both. The decimal
* point isn't necessary unless F is present.
* The "E" may actually be an "e". E and X
* may both be omitted (but not just one).
*/
char **endPtr; /* If non-NULL, store terminating character's
* address here. */
{
int sign, expSign = 0;
double fraction, dblExp, *d;
register const char *p;
register int c;
int exp = 0; /* Exponent read from "EX" field. */
int fracExp = 0; /* Exponent that derives from the fractional
* part. Under normal circumstatnces, it is
* the negative of the number of digits in F.
* However, if I is very long, the last digits
* of I get dropped (otherwise a long I with a
* large negative exponent could cause an
* unnecessary overflow on I alone). In this
* case, fracExp is incremented one for each
* dropped digit. */
int mantSize; /* Number of digits in mantissa. */
int decPt; /* Number of mantissa digits BEFORE decimal
* point. */
const char *pExp; /* Temporarily holds location of exponent
* in string. */
/*
* Strip off leading blanks and check for a sign.
*/
p = string;
while (isspace(*p)) {
p += 1;
}
if (*p == '-') {
sign = 1;
p += 1;
} else {
if (*p == '+') {
p += 1;
}
sign = 0;
}
/*
* Count the number of digits in the mantissa (including the decimal
* point), and also locate the decimal point.
*/
decPt = -1;
for (mantSize = 0; ; mantSize += 1)
{
c = *p;
if (!isdigit(c)) {
if ((c != '.') || (decPt >= 0)) {
break;
}
decPt = mantSize;
}
p += 1;
}
/*
* Now suck up the digits in the mantissa. Use two integers to
* collect 9 digits each (this is faster than using floating-point).
* If the mantissa has more than 18 digits, ignore the extras, since
* they can't affect the value anyway.
*/
pExp = p;
p -= mantSize;
if (decPt < 0) {
decPt = mantSize;
} else {
mantSize -= 1; /* One of the digits was the point. */
}
if (mantSize > 18) {
fracExp = decPt - 18;
mantSize = 18;
} else {
fracExp = decPt - mantSize;
}
if (mantSize == 0) {
fraction = 0.0;
p = string;
goto done;
} else {
int frac1, frac2;
frac1 = 0;
for ( ; mantSize > 9; mantSize -= 1)
{
c = *p;
p += 1;
if (c == '.') {
c = *p;
p += 1;
}
frac1 = 10*frac1 + (c - '0');
}
frac2 = 0;
for (; mantSize > 0; mantSize -= 1)
{
c = *p;
p += 1;
if (c == '.') {
c = *p;
p += 1;
}
frac2 = 10*frac2 + (c - '0');
}
fraction = (1.0e9 * frac1) + frac2;
}
/*
* Skim off the exponent.
*/
p = pExp;
if ((*p == 'E') || (*p == 'e')) {
p += 1;
if (*p == '-') {
expSign = 1;
p += 1;
} else {
if (*p == '+') {
p += 1;
}
expSign = 0;
}
while (isdigit(*p)) {
exp = exp * 10 + (*p - '0');
p += 1;
}
}
if (expSign) {
exp = fracExp - exp;
} else {
exp = fracExp + exp;
}
/*
* Generate a floating-point number that represents the exponent.
* Do this by processing the exponent one bit at a time to combine
* many powers of 2 of 10. Then combine the exponent with the
* fraction.
*/
if (exp < 0) {
expSign = 1;
exp = -exp;
} else {
expSign = 0;
}
if (exp > maxExponent) {
exp = maxExponent;
errno = ERANGE;
}
dblExp = 1.0;
for (d = powersOf10; exp != 0; exp >>= 1, d += 1) {
if (exp & 01) {
dblExp *= *d;
}
}
if (expSign) {
fraction /= dblExp;
} else {
fraction *= dblExp;
}
done:
if (endPtr != NULL) {
*endPtr = (char *) p;
}
if (sign) {
return -fraction;
}
return fraction;
}