2007-01-07 05:44:11 +01:00
|
|
|
// Copyright (c) 2005, 2006, Rodrigo Braz Monteiro
|
|
|
|
// Copyright (c) 2006, 2007, Niels Martin Hansen
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
// * Neither the name of the Aegisub Group nor the names of its contributors
|
|
|
|
// may be used to endorse or promote products derived from this software
|
|
|
|
// without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// AEGISUB
|
|
|
|
//
|
|
|
|
// Website: http://aegisub.cellosoft.com
|
|
|
|
// Contact: mailto:zeratul@cellosoft.com
|
|
|
|
//
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include "audio_spectrum.h"
|
|
|
|
#include "fft.h"
|
|
|
|
#include "colorspace.h"
|
|
|
|
#include "options.h"
|
|
|
|
|
|
|
|
|
|
|
|
// Audio spectrum FFT data cache
|
|
|
|
|
|
|
|
AudioSpectrumCache::CacheLine AudioSpectrumCache::null_line;
|
|
|
|
unsigned long AudioSpectrumCache::line_length;
|
|
|
|
|
|
|
|
void AudioSpectrumCache::SetLineLength(unsigned long new_length)
|
|
|
|
{
|
|
|
|
line_length = new_length;
|
|
|
|
null_line.resize(new_length, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Bottom level FFT cache, holds actual power data itself
|
|
|
|
|
|
|
|
class FinalSpectrumCache : public AudioSpectrumCache {
|
|
|
|
private:
|
|
|
|
std::vector<CacheLine> data;
|
|
|
|
unsigned long start, length; // start and end of range
|
|
|
|
|
|
|
|
public:
|
|
|
|
CacheLine& GetLine(unsigned long i)
|
|
|
|
{
|
|
|
|
// This check ought to be redundant
|
|
|
|
if (i >= start && i-start < length)
|
|
|
|
return data[i - start];
|
|
|
|
else
|
|
|
|
return null_line;
|
|
|
|
}
|
|
|
|
|
|
|
|
FinalSpectrumCache(AudioProvider *provider, unsigned long _start, unsigned long _length)
|
|
|
|
{
|
|
|
|
start = _start;
|
|
|
|
length = _length;
|
|
|
|
|
|
|
|
assert(length > 2);
|
|
|
|
|
|
|
|
// First fill the data vector with blanks
|
|
|
|
// Both start and end are included in the range stored, so we have end-start+1 elements
|
|
|
|
data.resize(length, null_line);
|
|
|
|
|
|
|
|
// Start sample number of the next line calculated
|
|
|
|
// line_length is half of the number of samples used to calculate a line, since half of the output from
|
|
|
|
// a Fourier transform of real data is redundant, and not interesting for the purpose of creating
|
|
|
|
// a frequenmcy/power spectrum.
|
|
|
|
__int64 sample = start * line_length*2;
|
|
|
|
|
|
|
|
// Raw sample data
|
|
|
|
short *raw_sample_data = new short[line_length*2];
|
|
|
|
float *sample_data = new float[line_length*2];
|
|
|
|
// Real and imaginary components of the output
|
|
|
|
float *out_r = new float[line_length*2];
|
|
|
|
float *out_i = new float[line_length*2];
|
|
|
|
|
2007-01-07 07:36:10 +01:00
|
|
|
FFT fft; // TODO: use FFTW instead? A wavelet?
|
2007-01-07 05:44:11 +01:00
|
|
|
|
|
|
|
for (unsigned long i = 0; i < length; ++i) {
|
|
|
|
provider->GetAudio(raw_sample_data, sample, line_length*2);
|
|
|
|
for (size_t j = 0; j < line_length; ++j) {
|
|
|
|
sample_data[j*2] = (float)raw_sample_data[j*2];
|
|
|
|
sample_data[j*2+1] = (float)raw_sample_data[j*2+1];
|
|
|
|
}
|
|
|
|
|
|
|
|
fft.Transform(line_length*2, sample_data, out_r, out_i);
|
|
|
|
|
|
|
|
CacheLine &line = data[i];
|
|
|
|
for (size_t j = 0; j < line_length; ++j) {
|
|
|
|
line[j] = sqrt(out_r[j]*out_r[j] + out_i[j]*out_i[j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
sample += line_length*2;
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] raw_sample_data;
|
|
|
|
delete[] sample_data;
|
|
|
|
delete[] out_r;
|
|
|
|
delete[] out_i;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual ~FinalSpectrumCache()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Non-bottom-level cache, refers to other caches to do the work
|
|
|
|
|
|
|
|
class IntermediateSpectrumCache : public AudioSpectrumCache {
|
|
|
|
private:
|
|
|
|
std::vector<AudioSpectrumCache*> sub_caches;
|
|
|
|
unsigned long start, length, subcache_length;
|
|
|
|
bool subcaches_are_final;
|
|
|
|
int depth;
|
|
|
|
AudioProvider *provider;
|
|
|
|
|
|
|
|
public:
|
|
|
|
CacheLine &GetLine(unsigned long i)
|
|
|
|
{
|
|
|
|
if (i >= start && i-start <= length) {
|
|
|
|
// Determine which sub-cache this line resides in
|
2007-01-07 07:36:10 +01:00
|
|
|
size_t subcache = (i-start) / subcache_length;
|
2007-01-07 05:44:11 +01:00
|
|
|
assert(subcache >= 0 && subcache < sub_caches.size());
|
|
|
|
|
|
|
|
if (!sub_caches[subcache]) {
|
|
|
|
if (subcaches_are_final) {
|
|
|
|
sub_caches[subcache] = new FinalSpectrumCache(provider, start+subcache*subcache_length, subcache_length);
|
|
|
|
} else {
|
|
|
|
sub_caches[subcache] = new IntermediateSpectrumCache(provider, start+subcache*subcache_length, subcache_length, depth+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sub_caches[subcache]->GetLine(i);
|
|
|
|
} else {
|
|
|
|
return null_line;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
IntermediateSpectrumCache(AudioProvider *_provider, unsigned long _start, unsigned long _length, int _depth)
|
|
|
|
{
|
|
|
|
provider = _provider;
|
|
|
|
start = _start;
|
|
|
|
length = _length;
|
|
|
|
depth = _depth;
|
|
|
|
|
|
|
|
// FIXME: this calculation probably needs tweaking
|
|
|
|
int num_subcaches = 1;
|
|
|
|
unsigned long tmp = length;
|
|
|
|
while (tmp > 0) {
|
|
|
|
tmp /= 16;
|
|
|
|
num_subcaches *= 2;
|
|
|
|
}
|
|
|
|
subcache_length = length / (num_subcaches-1);
|
|
|
|
|
|
|
|
subcaches_are_final = num_subcaches <= 4;
|
|
|
|
|
|
|
|
sub_caches.resize(num_subcaches, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual ~IntermediateSpectrumCache()
|
|
|
|
{
|
|
|
|
for (size_t i = 0; i < sub_caches.size(); ++i)
|
|
|
|
if (sub_caches[i])
|
|
|
|
delete sub_caches[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// AudioSpectrum
|
|
|
|
|
|
|
|
AudioSpectrum::AudioSpectrum(AudioProvider *_provider, unsigned long _line_length)
|
|
|
|
{
|
|
|
|
provider = _provider;
|
|
|
|
line_length = _line_length;
|
|
|
|
|
|
|
|
__int64 _num_lines = provider->GetNumSamples() / line_length / 2;
|
|
|
|
//assert (_num_lines < (1<<31)); // hope it fits into 32 bits...
|
|
|
|
num_lines = (unsigned long)_num_lines;
|
|
|
|
|
|
|
|
AudioSpectrumCache::SetLineLength(line_length);
|
|
|
|
cache = new IntermediateSpectrumCache(provider, 0, num_lines, 0);
|
|
|
|
|
|
|
|
power_scale = 1;
|
|
|
|
minband = Options.AsInt(_T("Audio Spectrum Cutoff"));
|
|
|
|
maxband = line_length - minband * 2/3; // TODO: make this customisable?
|
|
|
|
|
|
|
|
// Generate colour maps
|
|
|
|
unsigned char *palptr = colours_normal;
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
|
|
hsl_to_rgb(170 + i * 2/3, 128 + i/2, i, palptr+0, palptr+1, palptr+2);
|
|
|
|
palptr += 3;
|
|
|
|
}
|
|
|
|
palptr = colours_selected;
|
|
|
|
for (int i = 0; i < 256; i++) {
|
|
|
|
hsl_to_rgb(170 + i * 2/3, 128 + i/2, i*3/4+64, palptr+0, palptr+1, palptr+2);
|
|
|
|
palptr += 3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AudioSpectrum::~AudioSpectrum()
|
|
|
|
{
|
|
|
|
delete cache;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AudioSpectrum::RenderRange(__int64 range_start, __int64 range_end, bool selected, unsigned char *img, int imgleft, int imgwidth, int imgpitch, int imgheight)
|
|
|
|
{
|
|
|
|
unsigned long first_line = (unsigned long)(range_start / line_length / 2);
|
|
|
|
unsigned long last_line = (unsigned long)(range_end / line_length / 2);
|
|
|
|
unsigned long lines_to_render = last_line - first_line + 1;
|
|
|
|
|
|
|
|
float *power = new float[line_length];
|
|
|
|
|
|
|
|
int last_imgcol_rendered = -1;
|
|
|
|
|
|
|
|
unsigned char *palette;
|
|
|
|
if (selected)
|
|
|
|
palette = colours_selected;
|
|
|
|
else
|
|
|
|
palette = colours_normal;
|
|
|
|
|
2007-01-07 07:36:10 +01:00
|
|
|
// Some scaling constants
|
|
|
|
const int maxpower = (1 << (16 - 1))*256;
|
|
|
|
|
|
|
|
const double upscale = power_scale * 16384 / line_length;
|
|
|
|
const double onethirdmaxpower = maxpower / 3, twothirdmaxpower = maxpower * 2/3;
|
|
|
|
const double logoverscale = log(maxpower*upscale - twothirdmaxpower);
|
|
|
|
|
2007-01-07 05:44:11 +01:00
|
|
|
for (unsigned long i = first_line; i <= last_line; ++i) {
|
|
|
|
// Handle horizontal compression and don't unneededly re-render columns
|
|
|
|
int imgcol = imgleft + imgwidth * (i - first_line) / (last_line - first_line + 1);
|
|
|
|
if (imgcol <= last_imgcol_rendered)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
AudioSpectrumCache::CacheLine &line = cache->GetLine(i);
|
|
|
|
|
|
|
|
// Calculate the signal power over frequency
|
|
|
|
// "Compressed" scale
|
2007-01-07 07:36:10 +01:00
|
|
|
for (unsigned int j = 0; j < line_length; j++) {
|
2007-01-07 05:44:11 +01:00
|
|
|
// First do a simple linear scale power calculation -- 8 gives a reasonable default scaling
|
2007-01-07 07:36:10 +01:00
|
|
|
power[j] = line[j] * upscale;
|
2007-01-07 05:44:11 +01:00
|
|
|
if (power[j] > maxpower * 2/3) {
|
|
|
|
double p = power[j] - twothirdmaxpower;
|
|
|
|
p = log(p) * onethirdmaxpower / logoverscale;
|
|
|
|
power[j] = p + twothirdmaxpower;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define WRITE_PIXEL \
|
2007-01-07 08:28:39 +01:00
|
|
|
if (intensity < 0) intensity = 0; \
|
|
|
|
if (intensity > 255) intensity = 255; \
|
2007-01-07 05:44:11 +01:00
|
|
|
img[((imgheight-y-1)*imgpitch+x)*3 + 0] = palette[intensity*3+0]; \
|
|
|
|
img[((imgheight-y-1)*imgpitch+x)*3 + 1] = palette[intensity*3+1]; \
|
|
|
|
img[((imgheight-y-1)*imgpitch+x)*3 + 2] = palette[intensity*3+2];
|
|
|
|
|
2007-01-07 07:36:10 +01:00
|
|
|
// Handle horizontal expansion
|
2007-01-07 05:44:11 +01:00
|
|
|
int next_line_imgcol = imgleft + imgwidth * (i - first_line + 1) / (last_line - first_line + 1);
|
|
|
|
if (next_line_imgcol >= imgpitch)
|
|
|
|
next_line_imgcol = imgpitch-1;
|
|
|
|
|
|
|
|
for (int x = imgcol; x <= next_line_imgcol; ++x) {
|
|
|
|
|
|
|
|
// Decide which rendering algo to use
|
|
|
|
if (maxband - minband > imgheight) {
|
|
|
|
// more than one frequency sample per pixel (vertically compress data)
|
|
|
|
// pick the largest value per pixel for display
|
|
|
|
|
|
|
|
// Iterate over pixels, picking a range of samples for each
|
|
|
|
for (int y = 0; y < imgheight; ++y) {
|
|
|
|
int sample1 = maxband * y/imgheight + minband;
|
|
|
|
int sample2 = maxband * (y+1)/imgheight + minband;
|
|
|
|
float maxval = 0;
|
|
|
|
for (int samp = sample1; samp <= sample2; samp++) {
|
|
|
|
if (power[samp] > maxval) maxval = power[samp];
|
|
|
|
}
|
|
|
|
int intensity = int(256 * maxval / maxpower);
|
|
|
|
WRITE_PIXEL
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// less than one frequency sample per pixel (vertically expand data)
|
|
|
|
// interpolate between pixels
|
|
|
|
// can also happen with exactly one sample per pixel, but how often is that?
|
|
|
|
|
|
|
|
// Iterate over pixels, picking the nearest power values
|
|
|
|
for (int y = 0; y < imgheight; ++y) {
|
|
|
|
float ideal = (float)(y+1.)/imgheight * maxband;
|
|
|
|
float sample1 = power[(int)floor(ideal)+minband];
|
|
|
|
float sample2 = power[(int)ceil(ideal)+minband];
|
|
|
|
float frac = ideal - floor(ideal);
|
|
|
|
int intensity = int(((1-frac)*sample1 + frac*sample2) / maxpower * 256);
|
|
|
|
WRITE_PIXEL
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef WRITE_PIXEL
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
delete[] power;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AudioSpectrum::SetScaling(float _power_scale)
|
|
|
|
{
|
|
|
|
power_scale = _power_scale;
|
|
|
|
}
|
|
|
|
|