Aegisub/vendor/luajit/src/lj_strscan.c
2014-04-28 07:38:30 -07:00

497 lines
15 KiB
C

/*
** String scanning.
** Copyright (C) 2005-2014 Mike Pall. See Copyright Notice in luajit.h
*/
#include <math.h>
#define lj_strscan_c
#define LUA_CORE
#include "lj_obj.h"
#include "lj_char.h"
#include "lj_strscan.h"
/* -- Scanning numbers ---------------------------------------------------- */
/*
** Rationale for the builtin string to number conversion library:
**
** It removes a dependency on libc's strtod(), which is a true portability
** nightmare. Mainly due to the plethora of supported OS and toolchain
** combinations. Sadly, the various implementations
** a) are often buggy, incomplete (no hex floats) and/or imprecise,
** b) sometimes crash or hang on certain inputs,
** c) return non-standard NaNs that need to be filtered out, and
** d) fail if the locale-specific decimal separator is not a dot,
** which can only be fixed with atrocious workarounds.
**
** Also, most of the strtod() implementations are hopelessly bloated,
** which is not just an I-cache hog, but a problem for static linkage
** on embedded systems, too.
**
** OTOH the builtin conversion function is very compact. Even though it
** does a lot more, like parsing long longs, octal or imaginary numbers
** and returning the result in different formats:
** a) It needs less than 3 KB (!) of machine code (on x64 with -Os),
** b) it doesn't perform any dynamic allocation and,
** c) it needs only around 600 bytes of stack space.
**
** The builtin function is faster than strtod() for typical inputs, e.g.
** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents,
** which are not very common (this could be fixed, if needed).
**
** And most importantly, the builtin function is equally precise on all
** platforms. It correctly converts and rounds any input to a double.
** If this is not the case, please send a bug report -- but PLEASE verify
** that the implementation you're comparing to is not the culprit!
**
** The implementation quickly pre-scans the entire string first and
** handles simple integers on-the-fly. Otherwise, it dispatches to the
** base-specific parser. Hex and octal is straightforward.
**
** Decimal to binary conversion uses a fixed-length circular buffer in
** base 100. Some simple cases are handled directly. For other cases, the
** number in the buffer is up-scaled or down-scaled until the integer part
** is in the proper range. Then the integer part is rounded and converted
** to a double which is finally rescaled to the result. Denormals need
** special treatment to prevent incorrect 'double rounding'.
*/
/* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */
#define STRSCAN_DIG 1024
#define STRSCAN_MAXDIG 800 /* 772 + extra are sufficient. */
#define STRSCAN_DDIG (STRSCAN_DIG/2)
#define STRSCAN_DMASK (STRSCAN_DDIG-1)
/* Helpers for circular buffer. */
#define DNEXT(a) (((a)+1) & STRSCAN_DMASK)
#define DPREV(a) (((a)-1) & STRSCAN_DMASK)
#define DLEN(lo, hi) ((int32_t)(((lo)-(hi)) & STRSCAN_DMASK))
#define casecmp(c, k) (((c) | 0x20) == k)
/* Final conversion to double. */
static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg)
{
double n;
/* Avoid double rounding for denormals. */
if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) {
/* NYI: all of this generates way too much code on 32 bit CPUs. */
#if defined(__GNUC__) && LJ_64
int32_t b = (int32_t)(__builtin_clzll(x)^63);
#else
int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) :
(int32_t)lj_fls((uint32_t)x);
#endif
if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) {
uint64_t rb = (uint64_t)1 << (-1075-ex2);
if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb;
x = (x & ~(rb+rb-1));
}
}
/* Convert to double using a signed int64_t conversion, then rescale. */
lua_assert((int64_t)x >= 0);
n = (double)(int64_t)x;
if (neg) n = -n;
if (ex2) n = ldexp(n, ex2);
o->n = n;
}
/* Parse hexadecimal number. */
static StrScanFmt strscan_hex(const uint8_t *p, TValue *o,
StrScanFmt fmt, uint32_t opt,
int32_t ex2, int32_t neg, uint32_t dig)
{
uint64_t x = 0;
uint32_t i;
/* Scan hex digits. */
for (i = dig > 16 ? 16 : dig ; i; i--, p++) {
uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9;
x = (x << 4) + (d & 15);
}
/* Summarize rounding-effect of excess digits. */
for (i = 16; i < dig; i++, p++)
x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4;
/* Format-specific handling. */
switch (fmt) {
case STRSCAN_INT:
if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
o->i = neg ? -(int32_t)x : (int32_t)x;
return STRSCAN_INT; /* Fast path for 32 bit integers. */
}
if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; }
/* fallthrough */
case STRSCAN_U32:
if (dig > 8) return STRSCAN_ERROR;
o->i = neg ? -(int32_t)x : (int32_t)x;
return STRSCAN_U32;
case STRSCAN_I64:
case STRSCAN_U64:
if (dig > 16) return STRSCAN_ERROR;
o->u64 = neg ? (uint64_t)-(int64_t)x : x;
return fmt;
default:
break;
}
/* Reduce range then convert to double. */
if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; }
strscan_double(x, o, ex2, neg);
return fmt;
}
/* Parse octal number. */
static StrScanFmt strscan_oct(const uint8_t *p, TValue *o,
StrScanFmt fmt, int32_t neg, uint32_t dig)
{
uint64_t x = 0;
/* Scan octal digits. */
if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR;
while (dig-- > 0) {
if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR;
x = (x << 3) + (*p++ & 7);
}
/* Format-specific handling. */
switch (fmt) {
case STRSCAN_INT:
if (x >= 0x80000000u+neg) fmt = STRSCAN_U32;
/* fallthrough */
case STRSCAN_U32:
if ((x >> 32)) return STRSCAN_ERROR;
o->i = neg ? -(int32_t)x : (int32_t)x;
break;
default:
case STRSCAN_I64:
case STRSCAN_U64:
o->u64 = neg ? (uint64_t)-(int64_t)x : x;
break;
}
return fmt;
}
/* Parse decimal number. */
static StrScanFmt strscan_dec(const uint8_t *p, TValue *o,
StrScanFmt fmt, uint32_t opt,
int32_t ex10, int32_t neg, uint32_t dig)
{
uint8_t xi[STRSCAN_DDIG], *xip = xi;
if (dig) {
uint32_t i = dig;
if (i > STRSCAN_MAXDIG) {
ex10 += (int32_t)(i - STRSCAN_MAXDIG);
i = STRSCAN_MAXDIG;
}
/* Scan unaligned leading digit. */
if (((ex10^i) & 1))
*xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++;
/* Scan aligned double-digits. */
for ( ; i > 1; i -= 2) {
uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++;
*xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++;
}
/* Scan and realign trailing digit. */
if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, p++;
/* Summarize rounding-effect of excess digits. */
if (dig > STRSCAN_MAXDIG) {
do {
if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; }
p++;
} while (--dig > STRSCAN_MAXDIG);
dig = STRSCAN_MAXDIG;
} else { /* Simplify exponent. */
while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2;
}
} else { /* Only got zeros. */
ex10 = 0;
xi[0] = 0;
}
/* Fast path for numbers in integer format (but handles e.g. 1e6, too). */
if (dig <= 20 && ex10 == 0) {
uint8_t *xis;
uint64_t x = xi[0];
double n;
for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis;
if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) { /* No overflow? */
/* Format-specific handling. */
switch (fmt) {
case STRSCAN_INT:
if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) {
o->i = neg ? -(int32_t)x : (int32_t)x;
return STRSCAN_INT; /* Fast path for 32 bit integers. */
}
if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; }
/* fallthrough */
case STRSCAN_U32:
if ((x >> 32) != 0) return STRSCAN_ERROR;
o->i = neg ? -(int32_t)x : (int32_t)x;
return STRSCAN_U32;
case STRSCAN_I64:
case STRSCAN_U64:
o->u64 = neg ? (uint64_t)-(int64_t)x : x;
return fmt;
default:
plainnumber: /* Fast path for plain numbers < 2^63. */
if ((int64_t)x < 0) break;
n = (double)(int64_t)x;
if (neg) n = -n;
o->n = n;
return fmt;
}
}
}
/* Slow non-integer path. */
if (fmt == STRSCAN_INT) {
if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
fmt = STRSCAN_NUM;
} else if (fmt > STRSCAN_INT) {
return STRSCAN_ERROR;
}
{
uint32_t hi = 0, lo = (uint32_t)(xip-xi);
int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1);
lua_assert(lo > 0 && (ex10 & 1) == 0);
/* Handle simple overflow/underflow. */
if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; }
else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; }
/* Scale up until we have at least 17 or 18 integer part digits. */
while (idig < 9 && idig < DLEN(lo, hi)) {
uint32_t i, cy = 0;
ex2 -= 6;
for (i = DPREV(lo); ; i = DPREV(i)) {
uint32_t d = (xi[i] << 6) + cy;
cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100; /* Div/mod 100. */
xi[i] = (uint8_t)d;
if (i == hi) break;
if (d == 0 && i == DPREV(lo)) lo = i;
}
if (cy) {
hi = DPREV(hi);
if (xi[DPREV(lo)] == 0) lo = DPREV(lo);
else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; }
xi[hi] = (uint8_t)cy; idig++;
}
}
/* Scale down until no more than 17 or 18 integer part digits remain. */
while (idig > 9) {
uint32_t i, cy = 0;
ex2 += 6;
for (i = hi; i != lo; i = DNEXT(i)) {
cy += xi[i];
xi[i] = (cy >> 6);
cy = 100 * (cy & 0x3f);
if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--;
}
while (cy) {
if (hi == lo) { xi[DPREV(lo)] |= 1; break; }
xi[lo] = (cy >> 6); lo = DNEXT(lo);
cy = 100 * (cy & 0x3f);
}
}
/* Collect integer part digits and convert to rescaled double. */
{
uint64_t x = xi[hi];
uint32_t i;
for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i))
x = x * 100 + xi[i];
if (i == lo) {
while (--idig >= 0) x = x * 100;
} else { /* Gather round bit from remaining digits. */
x <<= 1; ex2--;
do {
if (xi[i]) { x |= 1; break; }
i = DNEXT(i);
} while (i != lo);
}
strscan_double(x, o, ex2, neg);
}
}
return fmt;
}
/* Scan string containing a number. Returns format. Returns value in o. */
StrScanFmt lj_strscan_scan(const uint8_t *p, TValue *o, uint32_t opt)
{
int32_t neg = 0;
/* Remove leading space, parse sign and non-numbers. */
if (LJ_UNLIKELY(!lj_char_isdigit(*p))) {
while (lj_char_isspace(*p)) p++;
if (*p == '+' || *p == '-') neg = (*p++ == '-');
if (LJ_UNLIKELY(*p >= 'A')) { /* Parse "inf", "infinity" or "nan". */
TValue tmp;
setnanV(&tmp);
if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) {
if (neg) setminfV(&tmp); else setpinfV(&tmp);
p += 3;
if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') &&
casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5;
} else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) {
p += 3;
}
while (lj_char_isspace(*p)) p++;
if (*p) return STRSCAN_ERROR;
o->u64 = tmp.u64;
return STRSCAN_NUM;
}
}
/* Parse regular number. */
{
StrScanFmt fmt = STRSCAN_INT;
int cmask = LJ_CHAR_DIGIT;
int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10;
const uint8_t *sp, *dp = NULL;
uint32_t dig = 0, hasdig = 0, x = 0;
int32_t ex = 0;
/* Determine base and skip leading zeros. */
if (LJ_UNLIKELY(*p <= '0')) {
if (*p == '0' && casecmp(p[1], 'x'))
base = 16, cmask = LJ_CHAR_XDIGIT, p += 2;
for ( ; ; p++) {
if (*p == '0') {
hasdig = 1;
} else if (*p == '.') {
if (dp) return STRSCAN_ERROR;
dp = p;
} else {
break;
}
}
}
/* Preliminary digit and decimal point scan. */
for (sp = p; ; p++) {
if (LJ_LIKELY(lj_char_isa(*p, cmask))) {
x = x * 10 + (*p & 15); /* For fast path below. */
dig++;
} else if (*p == '.') {
if (dp) return STRSCAN_ERROR;
dp = p;
} else {
break;
}
}
if (!(hasdig | dig)) return STRSCAN_ERROR;
/* Handle decimal point. */
if (dp) {
fmt = STRSCAN_NUM;
if (dig) {
ex = (int32_t)(dp-(p-1)); dp = p-1;
while (ex < 0 && *dp-- == '0') ex++, dig--; /* Skip trailing zeros. */
if (base == 16) ex *= 4;
}
}
/* Parse exponent. */
if (casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) {
uint32_t xx;
int negx = 0;
fmt = STRSCAN_NUM; p++;
if (*p == '+' || *p == '-') negx = (*p++ == '-');
if (!lj_char_isdigit(*p)) return STRSCAN_ERROR;
xx = (*p++ & 15);
while (lj_char_isdigit(*p)) {
if (xx < 65536) xx = xx * 10 + (*p & 15);
p++;
}
ex += negx ? -(int32_t)xx : (int32_t)xx;
}
/* Parse suffix. */
if (*p) {
/* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */
/* NYI: f (float). Not needed until cp_number() handles non-integers. */
if (casecmp(*p, 'i')) {
if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR;
p++; fmt = STRSCAN_IMAG;
} else if (fmt == STRSCAN_INT) {
if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32;
if (casecmp(*p, 'l')) {
p++;
if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT;
else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR;
else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT;
}
if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64))
p++, fmt += STRSCAN_U32 - STRSCAN_INT;
if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) ||
(fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL)))
return STRSCAN_ERROR;
}
while (lj_char_isspace(*p)) p++;
if (*p) return STRSCAN_ERROR;
}
/* Fast path for decimal 32 bit integers. */
if (fmt == STRSCAN_INT && base == 10 &&
(dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) {
int32_t y = neg ? -(int32_t)x : (int32_t)x;
if ((opt & STRSCAN_OPT_TONUM)) {
o->n = (double)y;
return STRSCAN_NUM;
} else {
o->i = y;
return STRSCAN_INT;
}
}
/* Dispatch to base-specific parser. */
if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG))
return strscan_oct(sp, o, fmt, neg, dig);
if (base == 16)
fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig);
else
fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig);
/* Try to convert number to integer, if requested. */
if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT)) {
double n = o->n;
int32_t i = lj_num2int(n);
if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; }
}
return fmt;
}
}
int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o)
{
StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o,
STRSCAN_OPT_TONUM);
lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM);
return (fmt != STRSCAN_ERROR);
}
#if LJ_DUALNUM
int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o)
{
StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), o,
STRSCAN_OPT_TOINT);
lua_assert(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT);
if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM);
return (fmt != STRSCAN_ERROR);
}
#endif
#undef DNEXT
#undef DPREV
#undef DLEN