916 lines
30 KiB
C
916 lines
30 KiB
C
/*
|
|
** Memory access optimizations.
|
|
** AA: Alias Analysis using high-level semantic disambiguation.
|
|
** FWD: Load Forwarding (L2L) + Store Forwarding (S2L).
|
|
** DSE: Dead-Store Elimination.
|
|
** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
|
|
*/
|
|
|
|
#define lj_opt_mem_c
|
|
#define LUA_CORE
|
|
|
|
#include "lj_obj.h"
|
|
|
|
#if LJ_HASJIT
|
|
|
|
#include "lj_tab.h"
|
|
#include "lj_ir.h"
|
|
#include "lj_jit.h"
|
|
#include "lj_iropt.h"
|
|
|
|
/* Some local macros to save typing. Undef'd at the end. */
|
|
#define IR(ref) (&J->cur.ir[(ref)])
|
|
#define fins (&J->fold.ins)
|
|
#define fleft (&J->fold.left)
|
|
#define fright (&J->fold.right)
|
|
|
|
/*
|
|
** Caveat #1: return value is not always a TRef -- only use with tref_ref().
|
|
** Caveat #2: FWD relies on active CSE for xREF operands -- see lj_opt_fold().
|
|
*/
|
|
|
|
/* Return values from alias analysis. */
|
|
typedef enum {
|
|
ALIAS_NO, /* The two refs CANNOT alias (exact). */
|
|
ALIAS_MAY, /* The two refs MAY alias (inexact). */
|
|
ALIAS_MUST /* The two refs MUST alias (exact). */
|
|
} AliasRet;
|
|
|
|
/* -- ALOAD/HLOAD forwarding and ASTORE/HSTORE elimination ---------------- */
|
|
|
|
/* Simplified escape analysis: check for intervening stores. */
|
|
static AliasRet aa_escape(jit_State *J, IRIns *ir, IRIns *stop)
|
|
{
|
|
IRRef ref = (IRRef)(ir - J->cur.ir); /* The ref that might be stored. */
|
|
for (ir++; ir < stop; ir++)
|
|
if (ir->op2 == ref &&
|
|
(ir->o == IR_ASTORE || ir->o == IR_HSTORE ||
|
|
ir->o == IR_USTORE || ir->o == IR_FSTORE))
|
|
return ALIAS_MAY; /* Reference was stored and might alias. */
|
|
return ALIAS_NO; /* Reference was not stored. */
|
|
}
|
|
|
|
/* Alias analysis for two different table references. */
|
|
static AliasRet aa_table(jit_State *J, IRRef ta, IRRef tb)
|
|
{
|
|
IRIns *taba = IR(ta), *tabb = IR(tb);
|
|
int newa, newb;
|
|
lua_assert(ta != tb);
|
|
lua_assert(irt_istab(taba->t) && irt_istab(tabb->t));
|
|
/* Disambiguate new allocations. */
|
|
newa = (taba->o == IR_TNEW || taba->o == IR_TDUP);
|
|
newb = (tabb->o == IR_TNEW || tabb->o == IR_TDUP);
|
|
if (newa && newb)
|
|
return ALIAS_NO; /* Two different allocations never alias. */
|
|
if (newb) { /* At least one allocation? */
|
|
IRIns *tmp = taba; taba = tabb; tabb = tmp;
|
|
} else if (!newa) {
|
|
return ALIAS_MAY; /* Anything else: we just don't know. */
|
|
}
|
|
return aa_escape(J, taba, tabb);
|
|
}
|
|
|
|
/* Alias analysis for array and hash access using key-based disambiguation. */
|
|
static AliasRet aa_ahref(jit_State *J, IRIns *refa, IRIns *refb)
|
|
{
|
|
IRRef ka = refa->op2;
|
|
IRRef kb = refb->op2;
|
|
IRIns *keya, *keyb;
|
|
IRRef ta, tb;
|
|
if (refa == refb)
|
|
return ALIAS_MUST; /* Shortcut for same refs. */
|
|
keya = IR(ka);
|
|
if (keya->o == IR_KSLOT) { ka = keya->op1; keya = IR(ka); }
|
|
keyb = IR(kb);
|
|
if (keyb->o == IR_KSLOT) { kb = keyb->op1; keyb = IR(kb); }
|
|
ta = (refa->o==IR_HREFK || refa->o==IR_AREF) ? IR(refa->op1)->op1 : refa->op1;
|
|
tb = (refb->o==IR_HREFK || refb->o==IR_AREF) ? IR(refb->op1)->op1 : refb->op1;
|
|
if (ka == kb) {
|
|
/* Same key. Check for same table with different ref (NEWREF vs. HREF). */
|
|
if (ta == tb)
|
|
return ALIAS_MUST; /* Same key, same table. */
|
|
else
|
|
return aa_table(J, ta, tb); /* Same key, possibly different table. */
|
|
}
|
|
if (irref_isk(ka) && irref_isk(kb))
|
|
return ALIAS_NO; /* Different constant keys. */
|
|
if (refa->o == IR_AREF) {
|
|
/* Disambiguate array references based on index arithmetic. */
|
|
int32_t ofsa = 0, ofsb = 0;
|
|
IRRef basea = ka, baseb = kb;
|
|
lua_assert(refb->o == IR_AREF);
|
|
/* Gather base and offset from t[base] or t[base+-ofs]. */
|
|
if (keya->o == IR_ADD && irref_isk(keya->op2)) {
|
|
basea = keya->op1;
|
|
ofsa = IR(keya->op2)->i;
|
|
if (basea == kb && ofsa != 0)
|
|
return ALIAS_NO; /* t[base+-ofs] vs. t[base]. */
|
|
}
|
|
if (keyb->o == IR_ADD && irref_isk(keyb->op2)) {
|
|
baseb = keyb->op1;
|
|
ofsb = IR(keyb->op2)->i;
|
|
if (ka == baseb && ofsb != 0)
|
|
return ALIAS_NO; /* t[base] vs. t[base+-ofs]. */
|
|
}
|
|
if (basea == baseb && ofsa != ofsb)
|
|
return ALIAS_NO; /* t[base+-o1] vs. t[base+-o2] and o1 != o2. */
|
|
} else {
|
|
/* Disambiguate hash references based on the type of their keys. */
|
|
lua_assert((refa->o==IR_HREF || refa->o==IR_HREFK || refa->o==IR_NEWREF) &&
|
|
(refb->o==IR_HREF || refb->o==IR_HREFK || refb->o==IR_NEWREF));
|
|
if (!irt_sametype(keya->t, keyb->t))
|
|
return ALIAS_NO; /* Different key types. */
|
|
}
|
|
if (ta == tb)
|
|
return ALIAS_MAY; /* Same table, cannot disambiguate keys. */
|
|
else
|
|
return aa_table(J, ta, tb); /* Try to disambiguate tables. */
|
|
}
|
|
|
|
/* Array and hash load forwarding. */
|
|
static TRef fwd_ahload(jit_State *J, IRRef xref)
|
|
{
|
|
IRIns *xr = IR(xref);
|
|
IRRef lim = xref; /* Search limit. */
|
|
IRRef ref;
|
|
|
|
/* Search for conflicting stores. */
|
|
ref = J->chain[fins->o+IRDELTA_L2S];
|
|
while (ref > xref) {
|
|
IRIns *store = IR(ref);
|
|
switch (aa_ahref(J, xr, IR(store->op1))) {
|
|
case ALIAS_NO: break; /* Continue searching. */
|
|
case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */
|
|
case ALIAS_MUST: return store->op2; /* Store forwarding. */
|
|
}
|
|
ref = store->prev;
|
|
}
|
|
|
|
/* No conflicting store (yet): const-fold loads from allocations. */
|
|
{
|
|
IRIns *ir = (xr->o == IR_HREFK || xr->o == IR_AREF) ? IR(xr->op1) : xr;
|
|
IRRef tab = ir->op1;
|
|
ir = IR(tab);
|
|
if (ir->o == IR_TNEW || (ir->o == IR_TDUP && irref_isk(xr->op2))) {
|
|
/* A NEWREF with a number key may end up pointing to the array part.
|
|
** But it's referenced from HSTORE and not found in the ASTORE chain.
|
|
** For now simply consider this a conflict without forwarding anything.
|
|
*/
|
|
if (xr->o == IR_AREF) {
|
|
IRRef ref2 = J->chain[IR_NEWREF];
|
|
while (ref2 > tab) {
|
|
IRIns *newref = IR(ref2);
|
|
if (irt_isnum(IR(newref->op2)->t))
|
|
goto cselim;
|
|
ref2 = newref->prev;
|
|
}
|
|
}
|
|
/* NEWREF inhibits CSE for HREF, and dependent FLOADs from HREFK/AREF.
|
|
** But the above search for conflicting stores was limited by xref.
|
|
** So continue searching, limited by the TNEW/TDUP. Store forwarding
|
|
** is ok, too. A conflict does NOT limit the search for a matching load.
|
|
*/
|
|
while (ref > tab) {
|
|
IRIns *store = IR(ref);
|
|
switch (aa_ahref(J, xr, IR(store->op1))) {
|
|
case ALIAS_NO: break; /* Continue searching. */
|
|
case ALIAS_MAY: goto cselim; /* Conflicting store. */
|
|
case ALIAS_MUST: return store->op2; /* Store forwarding. */
|
|
}
|
|
ref = store->prev;
|
|
}
|
|
lua_assert(ir->o != IR_TNEW || irt_isnil(fins->t));
|
|
if (irt_ispri(fins->t)) {
|
|
return TREF_PRI(irt_type(fins->t));
|
|
} else if (irt_isnum(fins->t) || (LJ_DUALNUM && irt_isint(fins->t)) ||
|
|
irt_isstr(fins->t)) {
|
|
TValue keyv;
|
|
cTValue *tv;
|
|
IRIns *key = IR(xr->op2);
|
|
if (key->o == IR_KSLOT) key = IR(key->op1);
|
|
lj_ir_kvalue(J->L, &keyv, key);
|
|
tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv);
|
|
lua_assert(itype2irt(tv) == irt_type(fins->t));
|
|
if (irt_isnum(fins->t))
|
|
return lj_ir_knum_u64(J, tv->u64);
|
|
else if (LJ_DUALNUM && irt_isint(fins->t))
|
|
return lj_ir_kint(J, intV(tv));
|
|
else
|
|
return lj_ir_kstr(J, strV(tv));
|
|
}
|
|
/* Othwerwise: don't intern as a constant. */
|
|
}
|
|
}
|
|
|
|
cselim:
|
|
/* Try to find a matching load. Below the conflicting store, if any. */
|
|
ref = J->chain[fins->o];
|
|
while (ref > lim) {
|
|
IRIns *load = IR(ref);
|
|
if (load->op1 == xref)
|
|
return ref; /* Load forwarding. */
|
|
ref = load->prev;
|
|
}
|
|
return 0; /* Conflict or no match. */
|
|
}
|
|
|
|
/* Reassociate ALOAD across PHIs to handle t[i-1] forwarding case. */
|
|
static TRef fwd_aload_reassoc(jit_State *J)
|
|
{
|
|
IRIns *irx = IR(fins->op1);
|
|
IRIns *key = IR(irx->op2);
|
|
if (key->o == IR_ADD && irref_isk(key->op2)) {
|
|
IRIns *add2 = IR(key->op1);
|
|
if (add2->o == IR_ADD && irref_isk(add2->op2) &&
|
|
IR(key->op2)->i == -IR(add2->op2)->i) {
|
|
IRRef ref = J->chain[IR_AREF];
|
|
IRRef lim = add2->op1;
|
|
if (irx->op1 > lim) lim = irx->op1;
|
|
while (ref > lim) {
|
|
IRIns *ir = IR(ref);
|
|
if (ir->op1 == irx->op1 && ir->op2 == add2->op1)
|
|
return fwd_ahload(J, ref);
|
|
ref = ir->prev;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ALOAD forwarding. */
|
|
TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J)
|
|
{
|
|
IRRef ref;
|
|
if ((ref = fwd_ahload(J, fins->op1)) ||
|
|
(ref = fwd_aload_reassoc(J)))
|
|
return ref;
|
|
return EMITFOLD;
|
|
}
|
|
|
|
/* HLOAD forwarding. */
|
|
TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J)
|
|
{
|
|
IRRef ref = fwd_ahload(J, fins->op1);
|
|
if (ref)
|
|
return ref;
|
|
return EMITFOLD;
|
|
}
|
|
|
|
/* HREFK forwarding. */
|
|
TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J)
|
|
{
|
|
IRRef tab = fleft->op1;
|
|
IRRef ref = J->chain[IR_NEWREF];
|
|
while (ref > tab) {
|
|
IRIns *newref = IR(ref);
|
|
if (tab == newref->op1) {
|
|
if (fright->op1 == newref->op2)
|
|
return ref; /* Forward from NEWREF. */
|
|
else
|
|
goto docse;
|
|
} else if (aa_table(J, tab, newref->op1) != ALIAS_NO) {
|
|
goto docse;
|
|
}
|
|
ref = newref->prev;
|
|
}
|
|
/* No conflicting NEWREF: key location unchanged for HREFK of TDUP. */
|
|
if (IR(tab)->o == IR_TDUP)
|
|
fins->t.irt &= ~IRT_GUARD; /* Drop HREFK guard. */
|
|
docse:
|
|
return CSEFOLD;
|
|
}
|
|
|
|
/* Check whether HREF of TNEW/TDUP can be folded to niltv. */
|
|
int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J)
|
|
{
|
|
IRRef lim = fins->op1; /* Search limit. */
|
|
IRRef ref;
|
|
|
|
/* The key for an ASTORE may end up in the hash part after a NEWREF. */
|
|
if (irt_isnum(fright->t) && J->chain[IR_NEWREF] > lim) {
|
|
ref = J->chain[IR_ASTORE];
|
|
while (ref > lim) {
|
|
if (ref < J->chain[IR_NEWREF])
|
|
return 0; /* Conflict. */
|
|
ref = IR(ref)->prev;
|
|
}
|
|
}
|
|
|
|
/* Search for conflicting stores. */
|
|
ref = J->chain[IR_HSTORE];
|
|
while (ref > lim) {
|
|
IRIns *store = IR(ref);
|
|
if (aa_ahref(J, fins, IR(store->op1)) != ALIAS_NO)
|
|
return 0; /* Conflict. */
|
|
ref = store->prev;
|
|
}
|
|
|
|
return 1; /* No conflict. Can fold to niltv. */
|
|
}
|
|
|
|
/* Check whether there's no aliasing NEWREF for the left operand. */
|
|
int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim)
|
|
{
|
|
IRRef ta = fins->op1;
|
|
IRRef ref = J->chain[IR_NEWREF];
|
|
while (ref > lim) {
|
|
IRIns *newref = IR(ref);
|
|
if (ta == newref->op1 || aa_table(J, ta, newref->op1) != ALIAS_NO)
|
|
return 0; /* Conflict. */
|
|
ref = newref->prev;
|
|
}
|
|
return 1; /* No conflict. Can safely FOLD/CSE. */
|
|
}
|
|
|
|
/* ASTORE/HSTORE elimination. */
|
|
TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J)
|
|
{
|
|
IRRef xref = fins->op1; /* xREF reference. */
|
|
IRRef val = fins->op2; /* Stored value reference. */
|
|
IRIns *xr = IR(xref);
|
|
IRRef1 *refp = &J->chain[fins->o];
|
|
IRRef ref = *refp;
|
|
while (ref > xref) { /* Search for redundant or conflicting stores. */
|
|
IRIns *store = IR(ref);
|
|
switch (aa_ahref(J, xr, IR(store->op1))) {
|
|
case ALIAS_NO:
|
|
break; /* Continue searching. */
|
|
case ALIAS_MAY: /* Store to MAYBE the same location. */
|
|
if (store->op2 != val) /* Conflict if the value is different. */
|
|
goto doemit;
|
|
break; /* Otherwise continue searching. */
|
|
case ALIAS_MUST: /* Store to the same location. */
|
|
if (store->op2 == val) /* Same value: drop the new store. */
|
|
return DROPFOLD;
|
|
/* Different value: try to eliminate the redundant store. */
|
|
if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */
|
|
IRIns *ir;
|
|
/* Check for any intervening guards (includes conflicting loads). */
|
|
for (ir = IR(J->cur.nins-1); ir > store; ir--)
|
|
if (irt_isguard(ir->t) || ir->o == IR_CALLL)
|
|
goto doemit; /* No elimination possible. */
|
|
/* Remove redundant store from chain and replace with NOP. */
|
|
*refp = store->prev;
|
|
store->o = IR_NOP;
|
|
store->t.irt = IRT_NIL;
|
|
store->op1 = store->op2 = 0;
|
|
store->prev = 0;
|
|
/* Now emit the new store instead. */
|
|
}
|
|
goto doemit;
|
|
}
|
|
ref = *(refp = &store->prev);
|
|
}
|
|
doemit:
|
|
return EMITFOLD; /* Otherwise we have a conflict or simply no match. */
|
|
}
|
|
|
|
/* -- ULOAD forwarding ---------------------------------------------------- */
|
|
|
|
/* The current alias analysis for upvalues is very simplistic. It only
|
|
** disambiguates between the unique upvalues of the same function.
|
|
** This is good enough for now, since most upvalues are read-only.
|
|
**
|
|
** A more precise analysis would be feasible with the help of the parser:
|
|
** generate a unique key for every upvalue, even across all prototypes.
|
|
** Lacking a realistic use-case, it's unclear whether this is beneficial.
|
|
*/
|
|
static AliasRet aa_uref(IRIns *refa, IRIns *refb)
|
|
{
|
|
if (refa->o != refb->o)
|
|
return ALIAS_NO; /* Different UREFx type. */
|
|
if (refa->op1 == refb->op1) { /* Same function. */
|
|
if (refa->op2 == refb->op2)
|
|
return ALIAS_MUST; /* Same function, same upvalue idx. */
|
|
else
|
|
return ALIAS_NO; /* Same function, different upvalue idx. */
|
|
} else { /* Different functions, check disambiguation hash values. */
|
|
if (((refa->op2 ^ refb->op2) & 0xff))
|
|
return ALIAS_NO; /* Upvalues with different hash values cannot alias. */
|
|
else
|
|
return ALIAS_MAY; /* No conclusion can be drawn for same hash value. */
|
|
}
|
|
}
|
|
|
|
/* ULOAD forwarding. */
|
|
TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J)
|
|
{
|
|
IRRef uref = fins->op1;
|
|
IRRef lim = REF_BASE; /* Search limit. */
|
|
IRIns *xr = IR(uref);
|
|
IRRef ref;
|
|
|
|
/* Search for conflicting stores. */
|
|
ref = J->chain[IR_USTORE];
|
|
while (ref > lim) {
|
|
IRIns *store = IR(ref);
|
|
switch (aa_uref(xr, IR(store->op1))) {
|
|
case ALIAS_NO: break; /* Continue searching. */
|
|
case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */
|
|
case ALIAS_MUST: return store->op2; /* Store forwarding. */
|
|
}
|
|
ref = store->prev;
|
|
}
|
|
|
|
cselim:
|
|
/* Try to find a matching load. Below the conflicting store, if any. */
|
|
|
|
ref = J->chain[IR_ULOAD];
|
|
while (ref > lim) {
|
|
IRIns *ir = IR(ref);
|
|
if (ir->op1 == uref ||
|
|
(IR(ir->op1)->op12 == IR(uref)->op12 && IR(ir->op1)->o == IR(uref)->o))
|
|
return ref; /* Match for identical or equal UREFx (non-CSEable UREFO). */
|
|
ref = ir->prev;
|
|
}
|
|
return lj_ir_emit(J);
|
|
}
|
|
|
|
/* USTORE elimination. */
|
|
TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J)
|
|
{
|
|
IRRef xref = fins->op1; /* xREF reference. */
|
|
IRRef val = fins->op2; /* Stored value reference. */
|
|
IRIns *xr = IR(xref);
|
|
IRRef1 *refp = &J->chain[IR_USTORE];
|
|
IRRef ref = *refp;
|
|
while (ref > xref) { /* Search for redundant or conflicting stores. */
|
|
IRIns *store = IR(ref);
|
|
switch (aa_uref(xr, IR(store->op1))) {
|
|
case ALIAS_NO:
|
|
break; /* Continue searching. */
|
|
case ALIAS_MAY: /* Store to MAYBE the same location. */
|
|
if (store->op2 != val) /* Conflict if the value is different. */
|
|
goto doemit;
|
|
break; /* Otherwise continue searching. */
|
|
case ALIAS_MUST: /* Store to the same location. */
|
|
if (store->op2 == val) /* Same value: drop the new store. */
|
|
return DROPFOLD;
|
|
/* Different value: try to eliminate the redundant store. */
|
|
if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */
|
|
IRIns *ir;
|
|
/* Check for any intervening guards (includes conflicting loads). */
|
|
for (ir = IR(J->cur.nins-1); ir > store; ir--)
|
|
if (irt_isguard(ir->t))
|
|
goto doemit; /* No elimination possible. */
|
|
/* Remove redundant store from chain and replace with NOP. */
|
|
*refp = store->prev;
|
|
store->o = IR_NOP;
|
|
store->t.irt = IRT_NIL;
|
|
store->op1 = store->op2 = 0;
|
|
store->prev = 0;
|
|
if (ref+1 < J->cur.nins &&
|
|
store[1].o == IR_OBAR && store[1].op1 == xref) {
|
|
IRRef1 *bp = &J->chain[IR_OBAR];
|
|
IRIns *obar;
|
|
for (obar = IR(*bp); *bp > ref+1; obar = IR(*bp))
|
|
bp = &obar->prev;
|
|
/* Remove OBAR, too. */
|
|
*bp = obar->prev;
|
|
obar->o = IR_NOP;
|
|
obar->t.irt = IRT_NIL;
|
|
obar->op1 = obar->op2 = 0;
|
|
obar->prev = 0;
|
|
}
|
|
/* Now emit the new store instead. */
|
|
}
|
|
goto doemit;
|
|
}
|
|
ref = *(refp = &store->prev);
|
|
}
|
|
doemit:
|
|
return EMITFOLD; /* Otherwise we have a conflict or simply no match. */
|
|
}
|
|
|
|
/* -- FLOAD forwarding and FSTORE elimination ----------------------------- */
|
|
|
|
/* Alias analysis for field access.
|
|
** Field loads are cheap and field stores are rare.
|
|
** Simple disambiguation based on field types is good enough.
|
|
*/
|
|
static AliasRet aa_fref(jit_State *J, IRIns *refa, IRIns *refb)
|
|
{
|
|
if (refa->op2 != refb->op2)
|
|
return ALIAS_NO; /* Different fields. */
|
|
if (refa->op1 == refb->op1)
|
|
return ALIAS_MUST; /* Same field, same object. */
|
|
else if (refa->op2 >= IRFL_TAB_META && refa->op2 <= IRFL_TAB_NOMM)
|
|
return aa_table(J, refa->op1, refb->op1); /* Disambiguate tables. */
|
|
else
|
|
return ALIAS_MAY; /* Same field, possibly different object. */
|
|
}
|
|
|
|
/* Only the loads for mutable fields end up here (see FOLD). */
|
|
TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J)
|
|
{
|
|
IRRef oref = fins->op1; /* Object reference. */
|
|
IRRef fid = fins->op2; /* Field ID. */
|
|
IRRef lim = oref; /* Search limit. */
|
|
IRRef ref;
|
|
|
|
/* Search for conflicting stores. */
|
|
ref = J->chain[IR_FSTORE];
|
|
while (ref > oref) {
|
|
IRIns *store = IR(ref);
|
|
switch (aa_fref(J, fins, IR(store->op1))) {
|
|
case ALIAS_NO: break; /* Continue searching. */
|
|
case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */
|
|
case ALIAS_MUST: return store->op2; /* Store forwarding. */
|
|
}
|
|
ref = store->prev;
|
|
}
|
|
|
|
/* No conflicting store: const-fold field loads from allocations. */
|
|
if (fid == IRFL_TAB_META) {
|
|
IRIns *ir = IR(oref);
|
|
if (ir->o == IR_TNEW || ir->o == IR_TDUP)
|
|
return lj_ir_knull(J, IRT_TAB);
|
|
}
|
|
|
|
cselim:
|
|
/* Try to find a matching load. Below the conflicting store, if any. */
|
|
return lj_opt_cselim(J, lim);
|
|
}
|
|
|
|
/* FSTORE elimination. */
|
|
TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J)
|
|
{
|
|
IRRef fref = fins->op1; /* FREF reference. */
|
|
IRRef val = fins->op2; /* Stored value reference. */
|
|
IRIns *xr = IR(fref);
|
|
IRRef1 *refp = &J->chain[IR_FSTORE];
|
|
IRRef ref = *refp;
|
|
while (ref > fref) { /* Search for redundant or conflicting stores. */
|
|
IRIns *store = IR(ref);
|
|
switch (aa_fref(J, xr, IR(store->op1))) {
|
|
case ALIAS_NO:
|
|
break; /* Continue searching. */
|
|
case ALIAS_MAY:
|
|
if (store->op2 != val) /* Conflict if the value is different. */
|
|
goto doemit;
|
|
break; /* Otherwise continue searching. */
|
|
case ALIAS_MUST:
|
|
if (store->op2 == val) /* Same value: drop the new store. */
|
|
return DROPFOLD;
|
|
/* Different value: try to eliminate the redundant store. */
|
|
if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */
|
|
IRIns *ir;
|
|
/* Check for any intervening guards or conflicting loads. */
|
|
for (ir = IR(J->cur.nins-1); ir > store; ir--)
|
|
if (irt_isguard(ir->t) || (ir->o == IR_FLOAD && ir->op2 == xr->op2))
|
|
goto doemit; /* No elimination possible. */
|
|
/* Remove redundant store from chain and replace with NOP. */
|
|
*refp = store->prev;
|
|
store->o = IR_NOP;
|
|
store->t.irt = IRT_NIL;
|
|
store->op1 = store->op2 = 0;
|
|
store->prev = 0;
|
|
/* Now emit the new store instead. */
|
|
}
|
|
goto doemit;
|
|
}
|
|
ref = *(refp = &store->prev);
|
|
}
|
|
doemit:
|
|
return EMITFOLD; /* Otherwise we have a conflict or simply no match. */
|
|
}
|
|
|
|
/* -- XLOAD forwarding and XSTORE elimination ----------------------------- */
|
|
|
|
/* Find cdata allocation for a reference (if any). */
|
|
static IRIns *aa_findcnew(jit_State *J, IRIns *ir)
|
|
{
|
|
while (ir->o == IR_ADD) {
|
|
if (!irref_isk(ir->op1)) {
|
|
IRIns *ir1 = aa_findcnew(J, IR(ir->op1)); /* Left-recursion. */
|
|
if (ir1) return ir1;
|
|
}
|
|
if (irref_isk(ir->op2)) return NULL;
|
|
ir = IR(ir->op2); /* Flatten right-recursion. */
|
|
}
|
|
return ir->o == IR_CNEW ? ir : NULL;
|
|
}
|
|
|
|
/* Alias analysis for two cdata allocations. */
|
|
static AliasRet aa_cnew(jit_State *J, IRIns *refa, IRIns *refb)
|
|
{
|
|
IRIns *cnewa = aa_findcnew(J, refa);
|
|
IRIns *cnewb = aa_findcnew(J, refb);
|
|
if (cnewa == cnewb)
|
|
return ALIAS_MAY; /* Same allocation or neither is an allocation. */
|
|
if (cnewa && cnewb)
|
|
return ALIAS_NO; /* Two different allocations never alias. */
|
|
if (cnewb) { cnewa = cnewb; refb = refa; }
|
|
return aa_escape(J, cnewa, refb);
|
|
}
|
|
|
|
/* Alias analysis for XLOAD/XSTORE. */
|
|
static AliasRet aa_xref(jit_State *J, IRIns *refa, IRIns *xa, IRIns *xb)
|
|
{
|
|
ptrdiff_t ofsa = 0, ofsb = 0;
|
|
IRIns *refb = IR(xb->op1);
|
|
IRIns *basea = refa, *baseb = refb;
|
|
if (refa == refb && irt_sametype(xa->t, xb->t))
|
|
return ALIAS_MUST; /* Shortcut for same refs with identical type. */
|
|
/* Offset-based disambiguation. */
|
|
if (refa->o == IR_ADD && irref_isk(refa->op2)) {
|
|
IRIns *irk = IR(refa->op2);
|
|
basea = IR(refa->op1);
|
|
ofsa = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 :
|
|
(ptrdiff_t)irk->i;
|
|
}
|
|
if (refb->o == IR_ADD && irref_isk(refb->op2)) {
|
|
IRIns *irk = IR(refb->op2);
|
|
baseb = IR(refb->op1);
|
|
ofsb = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 :
|
|
(ptrdiff_t)irk->i;
|
|
}
|
|
/* Treat constified pointers like base vs. base+offset. */
|
|
if (basea->o == IR_KPTR && baseb->o == IR_KPTR) {
|
|
ofsb += (char *)ir_kptr(baseb) - (char *)ir_kptr(basea);
|
|
baseb = basea;
|
|
}
|
|
/* This implements (very) strict aliasing rules.
|
|
** Different types do NOT alias, except for differences in signedness.
|
|
** Type punning through unions is allowed (but forces a reload).
|
|
*/
|
|
if (basea == baseb) {
|
|
ptrdiff_t sza = irt_size(xa->t), szb = irt_size(xb->t);
|
|
if (ofsa == ofsb) {
|
|
if (sza == szb && irt_isfp(xa->t) == irt_isfp(xb->t))
|
|
return ALIAS_MUST; /* Same-sized, same-kind. May need to convert. */
|
|
} else if (ofsa + sza <= ofsb || ofsb + szb <= ofsa) {
|
|
return ALIAS_NO; /* Non-overlapping base+-o1 vs. base+-o2. */
|
|
}
|
|
/* NYI: extract, extend or reinterpret bits (int <-> fp). */
|
|
return ALIAS_MAY; /* Overlapping or type punning: force reload. */
|
|
}
|
|
if (!irt_sametype(xa->t, xb->t) &&
|
|
!(irt_typerange(xa->t, IRT_I8, IRT_U64) &&
|
|
((xa->t.irt - IRT_I8) ^ (xb->t.irt - IRT_I8)) == 1))
|
|
return ALIAS_NO;
|
|
/* NYI: structural disambiguation. */
|
|
return aa_cnew(J, basea, baseb); /* Try to disambiguate allocations. */
|
|
}
|
|
|
|
/* Return CSEd reference or 0. Caveat: swaps lower ref to the right! */
|
|
static IRRef reassoc_trycse(jit_State *J, IROp op, IRRef op1, IRRef op2)
|
|
{
|
|
IRRef ref = J->chain[op];
|
|
IRRef lim = op1;
|
|
if (op2 > lim) { lim = op2; op2 = op1; op1 = lim; }
|
|
while (ref > lim) {
|
|
IRIns *ir = IR(ref);
|
|
if (ir->op1 == op1 && ir->op2 == op2)
|
|
return ref;
|
|
ref = ir->prev;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Reassociate index references. */
|
|
static IRRef reassoc_xref(jit_State *J, IRIns *ir)
|
|
{
|
|
ptrdiff_t ofs = 0;
|
|
if (ir->o == IR_ADD && irref_isk(ir->op2)) { /* Get constant offset. */
|
|
IRIns *irk = IR(ir->op2);
|
|
ofs = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 :
|
|
(ptrdiff_t)irk->i;
|
|
ir = IR(ir->op1);
|
|
}
|
|
if (ir->o == IR_ADD) { /* Add of base + index. */
|
|
/* Index ref > base ref for loop-carried dependences. Only check op1. */
|
|
IRIns *ir2, *ir1 = IR(ir->op1);
|
|
int32_t shift = 0;
|
|
IRRef idxref;
|
|
/* Determine index shifts. Don't bother with IR_MUL here. */
|
|
if (ir1->o == IR_BSHL && irref_isk(ir1->op2))
|
|
shift = IR(ir1->op2)->i;
|
|
else if (ir1->o == IR_ADD && ir1->op1 == ir1->op2)
|
|
shift = 1;
|
|
else
|
|
ir1 = ir;
|
|
ir2 = IR(ir1->op1);
|
|
/* A non-reassociated add. Must be a loop-carried dependence. */
|
|
if (ir2->o == IR_ADD && irt_isint(ir2->t) && irref_isk(ir2->op2))
|
|
ofs += (ptrdiff_t)IR(ir2->op2)->i << shift;
|
|
else
|
|
return 0;
|
|
idxref = ir2->op1;
|
|
/* Try to CSE the reassociated chain. Give up if not found. */
|
|
if (ir1 != ir &&
|
|
!(idxref = reassoc_trycse(J, ir1->o, idxref,
|
|
ir1->o == IR_BSHL ? ir1->op2 : idxref)))
|
|
return 0;
|
|
if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, ir->op2)))
|
|
return 0;
|
|
if (ofs != 0) {
|
|
IRRef refk = tref_ref(lj_ir_kintp(J, ofs));
|
|
if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, refk)))
|
|
return 0;
|
|
}
|
|
return idxref; /* Success, found a reassociated index reference. Phew. */
|
|
}
|
|
return 0; /* Failure. */
|
|
}
|
|
|
|
/* XLOAD forwarding. */
|
|
TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J)
|
|
{
|
|
IRRef xref = fins->op1;
|
|
IRIns *xr = IR(xref);
|
|
IRRef lim = xref; /* Search limit. */
|
|
IRRef ref;
|
|
|
|
if ((fins->op2 & IRXLOAD_READONLY))
|
|
goto cselim;
|
|
if ((fins->op2 & IRXLOAD_VOLATILE))
|
|
goto doemit;
|
|
|
|
/* Search for conflicting stores. */
|
|
ref = J->chain[IR_XSTORE];
|
|
retry:
|
|
if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS];
|
|
if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR];
|
|
while (ref > lim) {
|
|
IRIns *store = IR(ref);
|
|
switch (aa_xref(J, xr, fins, store)) {
|
|
case ALIAS_NO: break; /* Continue searching. */
|
|
case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */
|
|
case ALIAS_MUST:
|
|
/* Emit conversion if the loaded type doesn't match the forwarded type. */
|
|
if (!irt_sametype(fins->t, IR(store->op2)->t)) {
|
|
IRType dt = irt_type(fins->t), st = irt_type(IR(store->op2)->t);
|
|
if (dt == IRT_I8 || dt == IRT_I16) { /* Trunc + sign-extend. */
|
|
st = dt | IRCONV_SEXT;
|
|
dt = IRT_INT;
|
|
} else if (dt == IRT_U8 || dt == IRT_U16) { /* Trunc + zero-extend. */
|
|
st = dt;
|
|
dt = IRT_INT;
|
|
}
|
|
fins->ot = IRT(IR_CONV, dt);
|
|
fins->op1 = store->op2;
|
|
fins->op2 = (dt<<5)|st;
|
|
return RETRYFOLD;
|
|
}
|
|
return store->op2; /* Store forwarding. */
|
|
}
|
|
ref = store->prev;
|
|
}
|
|
|
|
cselim:
|
|
/* Try to find a matching load. Below the conflicting store, if any. */
|
|
ref = J->chain[IR_XLOAD];
|
|
while (ref > lim) {
|
|
/* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */
|
|
if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t))
|
|
return ref;
|
|
ref = IR(ref)->prev;
|
|
}
|
|
|
|
/* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */
|
|
if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] &&
|
|
xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) {
|
|
ref = J->chain[IR_XSTORE];
|
|
while (ref > lim) /* Skip stores that have already been checked. */
|
|
ref = IR(ref)->prev;
|
|
lim = xref;
|
|
xr = IR(xref);
|
|
goto retry; /* Retry with the reassociated reference. */
|
|
}
|
|
doemit:
|
|
return EMITFOLD;
|
|
}
|
|
|
|
/* XSTORE elimination. */
|
|
TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J)
|
|
{
|
|
IRRef xref = fins->op1;
|
|
IRIns *xr = IR(xref);
|
|
IRRef lim = xref; /* Search limit. */
|
|
IRRef val = fins->op2; /* Stored value reference. */
|
|
IRRef1 *refp = &J->chain[IR_XSTORE];
|
|
IRRef ref = *refp;
|
|
if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS];
|
|
if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR];
|
|
if (J->chain[IR_XSNEW] > lim) lim = J->chain[IR_XSNEW];
|
|
while (ref > lim) { /* Search for redundant or conflicting stores. */
|
|
IRIns *store = IR(ref);
|
|
switch (aa_xref(J, xr, fins, store)) {
|
|
case ALIAS_NO:
|
|
break; /* Continue searching. */
|
|
case ALIAS_MAY:
|
|
if (store->op2 != val) /* Conflict if the value is different. */
|
|
goto doemit;
|
|
break; /* Otherwise continue searching. */
|
|
case ALIAS_MUST:
|
|
if (store->op2 == val) /* Same value: drop the new store. */
|
|
return DROPFOLD;
|
|
/* Different value: try to eliminate the redundant store. */
|
|
if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */
|
|
IRIns *ir;
|
|
/* Check for any intervening guards or any XLOADs (no AA performed). */
|
|
for (ir = IR(J->cur.nins-1); ir > store; ir--)
|
|
if (irt_isguard(ir->t) || ir->o == IR_XLOAD)
|
|
goto doemit; /* No elimination possible. */
|
|
/* Remove redundant store from chain and replace with NOP. */
|
|
*refp = store->prev;
|
|
store->o = IR_NOP;
|
|
store->t.irt = IRT_NIL;
|
|
store->op1 = store->op2 = 0;
|
|
store->prev = 0;
|
|
/* Now emit the new store instead. */
|
|
}
|
|
goto doemit;
|
|
}
|
|
ref = *(refp = &store->prev);
|
|
}
|
|
doemit:
|
|
return EMITFOLD; /* Otherwise we have a conflict or simply no match. */
|
|
}
|
|
|
|
/* -- Forwarding of lj_tab_len -------------------------------------------- */
|
|
|
|
/* This is rather simplistic right now, but better than nothing. */
|
|
TRef LJ_FASTCALL lj_opt_fwd_tab_len(jit_State *J)
|
|
{
|
|
IRRef tab = fins->op1; /* Table reference. */
|
|
IRRef lim = tab; /* Search limit. */
|
|
IRRef ref;
|
|
|
|
/* Any ASTORE is a conflict and limits the search. */
|
|
if (J->chain[IR_ASTORE] > lim) lim = J->chain[IR_ASTORE];
|
|
|
|
/* Search for conflicting HSTORE with numeric key. */
|
|
ref = J->chain[IR_HSTORE];
|
|
while (ref > lim) {
|
|
IRIns *store = IR(ref);
|
|
IRIns *href = IR(store->op1);
|
|
IRIns *key = IR(href->op2);
|
|
if (irt_isnum(key->o == IR_KSLOT ? IR(key->op1)->t : key->t)) {
|
|
lim = ref; /* Conflicting store found, limits search for TLEN. */
|
|
break;
|
|
}
|
|
ref = store->prev;
|
|
}
|
|
|
|
/* Try to find a matching load. Below the conflicting store, if any. */
|
|
return lj_opt_cselim(J, lim);
|
|
}
|
|
|
|
/* -- ASTORE/HSTORE previous type analysis -------------------------------- */
|
|
|
|
/* Check whether the previous value for a table store is non-nil.
|
|
** This can be derived either from a previous store or from a previous
|
|
** load (because all loads from tables perform a type check).
|
|
**
|
|
** The result of the analysis can be used to avoid the metatable check
|
|
** and the guard against HREF returning niltv. Both of these are cheap,
|
|
** so let's not spend too much effort on the analysis.
|
|
**
|
|
** A result of 1 is exact: previous value CANNOT be nil.
|
|
** A result of 0 is inexact: previous value MAY be nil.
|
|
*/
|
|
int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref)
|
|
{
|
|
/* First check stores. */
|
|
IRRef ref = J->chain[loadop+IRDELTA_L2S];
|
|
while (ref > xref) {
|
|
IRIns *store = IR(ref);
|
|
if (store->op1 == xref) { /* Same xREF. */
|
|
/* A nil store MAY alias, but a non-nil store MUST alias. */
|
|
return !irt_isnil(store->t);
|
|
} else if (irt_isnil(store->t)) { /* Must check any nil store. */
|
|
IRRef skref = IR(store->op1)->op2;
|
|
IRRef xkref = IR(xref)->op2;
|
|
/* Same key type MAY alias. Need ALOAD check due to multiple int types. */
|
|
if (loadop == IR_ALOAD || irt_sametype(IR(skref)->t, IR(xkref)->t)) {
|
|
if (skref == xkref || !irref_isk(skref) || !irref_isk(xkref))
|
|
return 0; /* A nil store with same const key or var key MAY alias. */
|
|
/* Different const keys CANNOT alias. */
|
|
} /* Different key types CANNOT alias. */
|
|
} /* Other non-nil stores MAY alias. */
|
|
ref = store->prev;
|
|
}
|
|
|
|
/* Check loads since nothing could be derived from stores. */
|
|
ref = J->chain[loadop];
|
|
while (ref > xref) {
|
|
IRIns *load = IR(ref);
|
|
if (load->op1 == xref) { /* Same xREF. */
|
|
/* A nil load MAY alias, but a non-nil load MUST alias. */
|
|
return !irt_isnil(load->t);
|
|
} /* Other non-nil loads MAY alias. */
|
|
ref = load->prev;
|
|
}
|
|
return 0; /* Nothing derived at all, previous value MAY be nil. */
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------ */
|
|
|
|
#undef IR
|
|
#undef fins
|
|
#undef fleft
|
|
#undef fright
|
|
|
|
#endif
|