Aegisub/aegisub/src/aegisub_endian.h

346 lines
8.8 KiB
C++

// Copyright (c) 2008, Niels Martin Hansen
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of the Aegisub Group nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// -----------------------------------------------------------------------------
//
// AEGISUB
//
// Website: http://www.aegisub.net
// Contact: mailto:jiifurusu@gmail.com
//
#pragma once
#ifndef _AEGISUB_ENDIAN_H
#define _AEGISUB_ENDIAN_H
// Sanity check
#ifndef HAVE_LITTLE_ENDIAN
# ifndef HAVE_BIG_ENDIAN
// We neither have big nor little endian from configuration
# ifdef HAVE_UNIVERSAL_ENDIAN
// But this is an OS X system building a universal binary
// Apple's GCC defines _BIG_ENDIAN when building for PPC
# ifdef _BIG_ENDIAN
# define HAVE_BIG_ENDIAN
# else
# define HAVE_LITTLE_ENDIAN
# endif
# undef HAVE_DYNAMIC_ENDIAN
# else // !HAVE_UNIVERSAL_ENDIAN
// We aren't building an OS X universal binary
// Use the dynamic endian code
# ifndef HAVE_DYNAMIC_ENDIAN
# define HAVE_DYNAMIC_ENDIAN
# endif
# endif //HAVE_UNIVERSAL_ENDIAN
# endif // HAVE_BIG_ENDIAN
#endif // HAVE_LITTLE_ENDIAN
#ifdef HAVE_LITTLE_ENDIAN
# ifdef HAVE_BIG_ENDIAN
# error You cannot have both HAVE_LITTLE_ENDIAN and HAVE_BIG_ENDIAN defined at the same time
# endif
#endif
#include <stdint.h>
namespace Endian {
// Unconditionally reverse endianness
// These are only defined for unsigned ints,
// Use reinterpret_cast on the values if you need signed values.
inline uint16_t Reverse(uint16_t val)
{
return
((val & 0x00FF) << 8) |
((val & 0xFF00) >> 8);
}
inline uint32_t Reverse(uint32_t val)
{
return
((val & 0x000000FF) << 24) |
((val & 0x0000FF00) << 8) |
((val & 0x00FF0000) >> 8) |
((val & 0xFF000000) >> 24);
}
inline uint64_t Reverse(uint64_t val)
{
return
((val & 0x00000000000000FFULL) << 56) |
((val & 0x000000000000FF00ULL) << 40) |
((val & 0x0000000000FF0000ULL) << 24) |
((val & 0x00000000FF000000ULL) << 8) |
((val & 0x000000FF00000000ULL) >> 8) |
((val & 0x0000FF0000000000ULL) >> 24) |
((val & 0x00FF000000000000ULL) >> 40) |
((val & 0xFF00000000000000ULL) >> 56);
}
#ifndef HAVE_DYNAMIC_ENDIAN
// Regular, fast, templatized conditional reversing
template <class T>
inline T LittleToMachine(T val)
{
#ifdef HAVE_BIG_ENDIAN
// We're on big endian, reverse little to big
return Reverse(val);
#else
// We're on little endian and input is little
return val;
#endif
}
template <class T>
inline T BigToMachine(T val)
{
#ifdef HAVE_LITTLE_ENDIAN
// We're on little endian, reverse big to little
return Reverse(val);
#else
// We're on big endian and input is big
return val;
#endif
}
template <class T>
inline T MachineToLittle(T val)
{
#ifdef HAVE_BIG_ENDIAN
// We're on big endian, reverse to little
return Reverse(val);
#else
// Already on little, nothing to be done
return val;
#endif
}
template <class T>
inline T MachineToBig(T val)
{
#ifdef HAVE_LITTLE_ENDIAN
// We're on little endian, reverse to big
return Reverse(val);
#else
// Already on big, nothing to be done
return val;
#endif
}
#else // HAVE_DYNAMIC_ENDIAN
// Dynamic endianness handling
// Exploit that bit-shifting operations always can put bytes into
// machine word order, while unions can be used to access bytes
// only from an explicitly given byte order.
// This is probably slower than when we explicitly know
// the endianness of the machine we are on, but it's the same
// code for any platform!
// Unions to pack together ints and get their physical bytes
union bytes16 {
uint8_t byte[2];
uint16_t word;
};
union bytes32 {
uint8_t byte[4];
uint32_t word;
};
union bytes64 {
uint8_t byte[8];
uint64_t word;
};
// 16 bit words
inline uint16_t MachineToBig(uint16_t val)
{
bytes16 pack;
// Store the bytes into the correct positions in the word
pack.byte[0] = (val & 0xFF00) >> 8;
pack.byte[1] = val & 0x00FF;
// And return a value now encoded as big endian
return pack.word;
}
inline uint16_t MachineToLittle(uint16_t val)
{
bytes16 pack;
// Store the bytes into the correct positions in the word
pack.byte[0] = val & 0x00FF;
pack.byte[1] = (val & 0xFF00) >> 8;
// And return a value now encoded as little endian
return pack.word;
}
inline uint16_t BigToMachine(uint16_t val)
{
bytes16 pack;
// Put our word into the pack
pack.word = val;
// And produce a machine endian value of it
return uint16_t(pack.byte[1]) | (uint16_t(pack.byte[0]) << 8);
}
inline uint16_t LittleToMachine(uint16_t val)
{
bytes16 pack;
// Put our word into the pack
pack.word = val;
// And produce a machine endian value of it
return uint16_t(pack.byte[0]) | (uint16_t(pack.byte[1]) << 8);
}
// 32 bit words
inline uint32_t MachineToBig(uint32_t val)
{
bytes32 pack;
pack.byte[0] = (val & 0xFF000000) >> 24;
pack.byte[1] = (val & 0x00FF0000) >> 16;
pack.byte[2] = (val & 0x0000FF00) >> 8;
pack.byte[3] = val & 0x000000FF ;
return pack.word;
}
inline uint32_t MachineToLittle(uint32_t val)
{
bytes32 pack;
pack.byte[0] = val & 0x000000FF ;
pack.byte[1] = (val & 0x0000FF00) >> 8;
pack.byte[2] = (val & 0x00FF0000) >> 16;
pack.byte[3] = (val & 0xFF000000) >> 24;
return pack.word;
}
inline uint32_t BigToMachine(uint32_t val)
{
bytes32 pack;
pack.word = val;
return
(uint32_t(pack.byte[0]) << 24) |
(uint32_t(pack.byte[1]) << 16) |
(uint32_t(pack.byte[2]) << 8) |
uint32_t(pack.byte[3]);
}
inline uint32_t LittleToMachine(uint32_t val)
{
bytes32 pack;
pack.word = val;
return
(uint32_t(pack.byte[3]) << 24) |
(uint32_t(pack.byte[2]) << 16) |
(uint32_t(pack.byte[1]) << 8) |
uint32_t(pack.byte[0]);
}
// 64 bit words
inline uint64_t MachineToBig(uint64_t val)
{
bytes64 pack;
pack.byte[0] = (val & 0xFF00000000000000ULL) >> 56;
pack.byte[1] = (val & 0x00FF000000000000ULL) >> 48;
pack.byte[2] = (val & 0x0000FF0000000000ULL) >> 40;
pack.byte[3] = (val & 0x000000FF00000000ULL) >> 32;
pack.byte[4] = (val & 0x00000000FF000000ULL) >> 24;
pack.byte[5] = (val & 0x0000000000FF0000ULL) >> 16;
pack.byte[6] = (val & 0x000000000000FF00ULL) >> 8;
pack.byte[7] = val & 0x00000000000000FFULL ;
return pack.word;
}
inline uint64_t MachineToLittle(uint64_t val)
{
bytes64 pack;
pack.byte[0] = val & 0x00000000000000FFULL ;
pack.byte[1] = (val & 0x000000000000FF00ULL) >> 8;
pack.byte[2] = (val & 0x0000000000FF0000ULL) >> 16;
pack.byte[3] = (val & 0x00000000FF000000ULL) >> 24;
pack.byte[4] = (val & 0x000000FF00000000ULL) >> 32;
pack.byte[5] = (val & 0x0000FF0000000000ULL) >> 40;
pack.byte[6] = (val & 0x00FF000000000000ULL) >> 48;
pack.byte[7] = (val & 0xFF00000000000000ULL) >> 56;
return pack.word;
}
inline uint64_t BigToMachine(uint64_t val)
{
bytes64 pack;
pack.word = val;
return
(uint64_t(pack.byte[0]) << 56) |
(uint64_t(pack.byte[1]) << 48) |
(uint64_t(pack.byte[2]) << 40) |
(uint64_t(pack.byte[3]) << 32) |
(uint64_t(pack.byte[4]) << 24) |
(uint64_t(pack.byte[5]) << 16) |
(uint64_t(pack.byte[6]) << 8) |
uint64_t(pack.byte[7]);
}
inline uint64_t LittleToMachine(uint64_t val)
{
bytes64 pack;
pack.word = val;
return
(uint64_t(pack.byte[7]) << 56) |
(uint64_t(pack.byte[6]) << 48) |
(uint64_t(pack.byte[5]) << 40) |
(uint64_t(pack.byte[4]) << 32) |
(uint64_t(pack.byte[3]) << 24) |
(uint64_t(pack.byte[2]) << 16) |
(uint64_t(pack.byte[1]) << 8) |
uint64_t(pack.byte[0]);
}
#endif
};
#endif