1
0
Fork 0
forked from mia/0x0
0x0/nsfw_detect.py

63 lines
2.2 KiB
Python
Raw Normal View History

2017-10-27 05:22:11 +02:00
#!/usr/bin/env python3
import numpy as np
import os
import sys
from io import BytesIO
from subprocess import run, PIPE, DEVNULL
os.environ["GLOG_minloglevel"] = "2" # seriously :|
import caffe
class NSFWDetector:
def __init__(self):
npath = os.path.join(os.path.dirname(__file__), "nsfw_model")
self.nsfw_net = caffe.Net(os.path.join(npath, "deploy.prototxt"),
os.path.join(npath, "resnet_50_1by2_nsfw.caffemodel"),
caffe.TEST)
self.caffe_transformer = caffe.io.Transformer({'data': self.nsfw_net.blobs['data'].data.shape})
self.caffe_transformer.set_transpose('data', (2, 0, 1)) # move image channels to outermost
self.caffe_transformer.set_mean('data', np.array([104, 117, 123])) # subtract the dataset-mean value in each channel
self.caffe_transformer.set_raw_scale('data', 255) # rescale from [0, 1] to [0, 255]
self.caffe_transformer.set_channel_swap('data', (2, 1, 0)) # swap channels from RGB to BGR
def _compute(self, img):
image = caffe.io.load_image(BytesIO(img))
H, W, _ = image.shape
_, _, h, w = self.nsfw_net.blobs["data"].data.shape
h_off = int(max((H - h) / 2, 0))
w_off = int(max((W - w) / 2, 0))
crop = image[h_off:h_off + h, w_off:w_off + w, :]
transformed_image = self.caffe_transformer.preprocess('data', crop)
transformed_image.shape = (1,) + transformed_image.shape
input_name = self.nsfw_net.inputs[0]
output_layers = ["prob"]
all_outputs = self.nsfw_net.forward_all(blobs=output_layers,
**{input_name: transformed_image})
outputs = all_outputs[output_layers[0]][0].astype(float)
return outputs
def detect(self, fpath):
try:
ff = run(["ffmpegthumbnailer", "-m", "-o-", "-s256", "-t50%", "-a", "-cpng", "-i", fpath], stdout=PIPE, stderr=DEVNULL, check=True)
image_data = ff.stdout
except:
return -1.0
scores = self._compute(image_data)
return scores[1]
if __name__ == "__main__":
n = NSFWDetector()
for inf in sys.argv[1:]:
score = n.detect(inf)
print(inf, score)