Aegisub/src/audio_renderer_spectrum.cpp

305 lines
8.8 KiB
C++
Raw Normal View History

// Copyright (c) 2005-2006, Rodrigo Braz Monteiro
// Copyright (c) 2006-2010, Niels Martin Hansen
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of the Aegisub Group nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Aegisub Project http://www.aegisub.org/
/// @file audio_renderer_spectrum.cpp
/// @brief Caching frequency-power spectrum renderer for audio display
/// @ingroup audio_ui
#include "audio_renderer_spectrum.h"
#include "audio_colorscheme.h"
#ifndef WITH_FFTW3
#include "fft.h"
#endif
#include "include/aegisub/audio_provider.h"
#include <libaegisub/make_unique.h>
#include <algorithm>
#include <wx/image.h>
#include <wx/dcmemory.h>
/// Allocates blocks of derived data for the audio spectrum
struct AudioSpectrumCacheBlockFactory {
2013-10-27 15:15:39 +01:00
typedef std::unique_ptr<float, std::default_delete<float[]>> BlockType;
/// Pointer back to the owning spectrum renderer
AudioSpectrumRenderer *spectrum;
/// @brief Constructor
/// @param s The owning spectrum renderer
AudioSpectrumCacheBlockFactory(AudioSpectrumRenderer *s) : spectrum(s) { }
/// @brief Allocate and fill a data block
/// @param i Index of the block to produce data for
/// @return Newly allocated and filled block
///
/// The filling is delegated to the spectrum renderer
2013-10-27 15:15:39 +01:00
BlockType ProduceBlock(size_t i)
{
2013-11-21 18:13:36 +01:00
auto res = new float[((size_t)1)<<spectrum->derivation_size];
spectrum->FillBlock(i, res);
2013-10-27 15:15:39 +01:00
return BlockType(res);
}
/// @brief Calculate the in-memory size of a spec
/// @return The size in bytes of a spectrum cache block
size_t GetBlockSize() const
{
return sizeof(float) << spectrum->derivation_size;
}
};
/// @brief Cache for audio spectrum frequency-power data
class AudioSpectrumCache
: public DataBlockCache<float, 10, AudioSpectrumCacheBlockFactory> {
public:
AudioSpectrumCache(size_t block_count, AudioSpectrumRenderer *renderer)
: DataBlockCache<float, 10, AudioSpectrumCacheBlockFactory>(
block_count, AudioSpectrumCacheBlockFactory(renderer))
{
}
};
AudioSpectrumRenderer::AudioSpectrumRenderer(std::string const& color_scheme_name)
{
colors.reserve(AudioStyle_MAX);
for (int i = 0; i < AudioStyle_MAX; ++i)
2012-11-28 16:35:26 +01:00
colors.emplace_back(12, color_scheme_name, i);
}
AudioSpectrumRenderer::~AudioSpectrumRenderer()
{
// This sequence will clean up
2013-10-27 15:15:39 +01:00
provider = nullptr;
RecreateCache();
}
void AudioSpectrumRenderer::RecreateCache()
{
#ifdef WITH_FFTW3
if (dft_plan)
{
fftw_destroy_plan(dft_plan);
fftw_free(dft_input);
fftw_free(dft_output);
2013-11-21 18:13:36 +01:00
dft_plan = nullptr;
dft_input = nullptr;
dft_output = nullptr;
}
#endif
if (provider)
{
size_t block_count = (size_t)((provider->GetNumSamples() + (size_t)(1<<derivation_dist) - 1) >> derivation_dist);
cache = agi::make_unique<AudioSpectrumCache>(block_count, this);
#ifdef WITH_FFTW3
dft_input = fftw_alloc_real(2<<derivation_size);
dft_output = fftw_alloc_complex(2<<derivation_size);
dft_plan = fftw_plan_dft_r2c_1d(
2<<derivation_size,
dft_input,
dft_output,
FFTW_MEASURE);
#else
// Allocate scratch for 6x the derivation size:
// 2x for the input sample data
// 2x for the real part of the output
// 2x for the imaginary part of the output
fft_scratch.resize(6 << derivation_size);
#endif
audio_scratch.resize(2 << derivation_size);
}
}
void AudioSpectrumRenderer::OnSetProvider()
{
RecreateCache();
}
void AudioSpectrumRenderer::SetResolution(size_t _derivation_size, size_t _derivation_dist)
{
if (derivation_dist != _derivation_dist)
{
derivation_dist = _derivation_dist;
if (cache)
cache->Age(0);
}
if (derivation_size != _derivation_size)
{
derivation_size = _derivation_size;
RecreateCache();
}
}
template<class T>
void AudioSpectrumRenderer::ConvertToFloat(size_t count, T *dest) {
for (size_t si = 0; si < count; ++si)
{
dest[si] = (T)(audio_scratch[si]) / 32768.0;
}
}
void AudioSpectrumRenderer::FillBlock(size_t block_index, float *block)
{
assert(cache);
assert(block);
int64_t first_sample = ((int64_t)block_index) << derivation_dist;
provider->GetAudio(&audio_scratch[0], first_sample, 2 << derivation_size);
#ifdef WITH_FFTW3
ConvertToFloat(2 << derivation_size, dft_input);
fftw_execute(dft_plan);
float scale_factor = 9 / sqrt(2 * (float)(2<<derivation_size));
fftw_complex *o = dft_output;
for (size_t si = 1<<derivation_size; si > 0; --si)
{
*block++ = log10( sqrt(o[0][0] * o[0][0] + o[0][1] * o[0][1]) * scale_factor + 1 );
o++;
}
#else
ConvertToFloat(2 << derivation_size, &fft_scratch[0]);
float *fft_input = &fft_scratch[0];
float *fft_real = &fft_scratch[0] + (2 << derivation_size);
float *fft_imag = &fft_scratch[0] + (4 << derivation_size);
FFT fft;
fft.Transform(2<<derivation_size, fft_input, fft_real, fft_imag);
float scale_factor = 9 / sqrt(2 * (float)(2<<derivation_size));
for (size_t si = 1<<derivation_size; si > 0; --si)
{
// With x in range [0;1], log10(x*9+1) will also be in range [0;1],
// although the FFT output can apparently get greater magnitudes than 1
// despite the input being limited to [-1;+1).
*block++ = log10( sqrt(*fft_real * *fft_real + *fft_imag * *fft_imag) * scale_factor + 1 );
fft_real++; fft_imag++;
}
#endif
}
void AudioSpectrumRenderer::Render(wxBitmap &bmp, int start, AudioRenderingStyle style)
{
if (!cache)
return;
assert(bmp.IsOk());
assert(bmp.GetDepth() == 24);
int end = start + bmp.GetWidth();
assert(start >= 0);
assert(end >= 0);
assert(end >= start);
// Prepare an image buffer to write
wxImage img(bmp.GetSize());
unsigned char *imgdata = img.GetData();
ptrdiff_t stride = img.GetWidth()*3;
int imgheight = img.GetHeight();
const AudioColorScheme *pal = &colors[style];
/// @todo Make minband and maxband configurable
int minband = 0;
int maxband = 1 << derivation_size;
// ax = absolute x, absolute to the virtual spectrum bitmap
for (int ax = start; ax < end; ++ax)
{
// Derived audio data
size_t block_index = (size_t)(ax * pixel_ms * provider->GetSampleRate() / 1000) >> derivation_dist;
float *power = cache->Get(block_index);
// Prepare bitmap writing
unsigned char *px = imgdata + (imgheight-1) * stride + (ax - start) * 3;
// Scale up or down vertically?
if (imgheight > 1<<derivation_size)
{
// Interpolate
for (int y = 0; y < imgheight; ++y)
{
assert(px >= imgdata);
assert(px < imgdata + imgheight*stride);
float ideal = (float)(y+1.)/imgheight * (maxband-minband) + minband;
float sample1 = power[(int)floor(ideal)+minband];
float sample2 = power[(int)ceil(ideal)+minband];
float frac = ideal - floor(ideal);
float val = (1-frac)*sample1 + frac*sample2;
pal->map(val*amplitude_scale, px);
px -= stride;
}
}
else
{
// Pick greatest
for (int y = 0; y < imgheight; ++y)
{
assert(px >= imgdata);
assert(px < imgdata + imgheight*stride);
int sample1 = std::max(0, maxband * y/imgheight + minband);
int sample2 = std::min((1<<derivation_size)-1, maxband * (y+1)/imgheight + minband);
2012-12-23 05:26:43 +01:00
float maxval = *std::max_element(&power[sample1], &power[sample2 + 1]);
pal->map(maxval*amplitude_scale, px);
px -= stride;
}
}
}
wxBitmap tmpbmp(img);
wxMemoryDC targetdc(bmp);
targetdc.DrawBitmap(tmpbmp, 0, 0);
}
void AudioSpectrumRenderer::RenderBlank(wxDC &dc, const wxRect &rect, AudioRenderingStyle style)
{
// Get the colour of silence
wxColour col = colors[style].get(0.0f);
dc.SetBrush(wxBrush(col));
dc.SetPen(wxPen(col));
dc.DrawRectangle(rect);
}
void AudioSpectrumRenderer::AgeCache(size_t max_size)
{
if (cache)
cache->Age(max_size);
}